PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 3 |

Tytuł artykułu

Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sugar, a final product of photosynthesis, is reported to be involved in the defense mechanisms of plants against abiotic stresses such as salinity, water deficiency, extreme temperature and mineral toxicity. Elements involved in photosynthesis, sugar content, water oxidation, net photosynthetic rate, activity of enzyme and gene expression have therefore been studied in Homjan (HJ), salt-tolerant, and Pathumthani 1 (PT1), salt-sensitive, varieties of rice. Fructose-1,6-biphosphatase (FBP) and fructokinase (FK) genes were rapidly expressed in HJ rice when exposed to salt stress for 1–6 h and to a greater degree than in PT1 rice. An increase in FBP enzyme activity was found in both roots and leaves of the salt-tolerant variety after exposure to salt stress. A high level of sugar and a delay in chlorophyll degradation were found in salt-tolerant rice. The total sugar content in leaf and root tissues of salttolerant rice was 2.47 and 2.85 times higher, respectively, than in the salt-sensitive variety. Meanwhile, less chlorophyll degradation was detected. Salt stress may promote sugar accumulation, thus preventing the degradation of chlorophyll. Water oxidation by the light reaction of photosynthesis in the salt-tolerant variety was greater than that in the salt-sensitive variety, indicated by a high maximum quantum yield of PSII (Fv/Fm) and quantum efficiency of PSII (ΦPSII) with low nonphotochemical quenching (NPQ), leading to a high net photosynthetic rate. In addition, the overall growth performances in the salt-tolerant variety were higher than those in the salt-sensitive variety. The FBP gene expression and enzyme activity, sugar accumulation, pigment stabilization, water oxidation and net photosynthetic rate parameters in HJ rice should be further investigated as multivariate salt-tolerant indices for the classification of salt tolerance in rice breeding programs.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

3

Opis fizyczny

p.477-486,fig.,ref.

Twórcy

autor
  • National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
  • Department of Biology, Faculty of Science, Silpakorn University, Nakhonpathom 73000, Thailand
autor
  • National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
autor
  • National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand

Bibliografia

  • Anderson LE, Yousefzai R, Ringenberg MR, Carol AA (2004) Both chloroplastic and cytosolic fructose bisphosphatase isozymes are present in the pea leaf nucleus. Plant Sci 166:721–730. doi: 10.1016/j.plantsci.2003.11.008
  • Arbona V, Marco AJ, Iglesias DJ, López-Climent MF, Talon M, Gómez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regul 46:153–160. doi:10.1007/s10725-005-7769-z
  • Arndt SK, Arampatsis C, Foetzki A, Li X, Zeng F, Zhang X (2004) Contrasting patterns of leaf solute accumulation in four phreatophytic desert plants in a hyperarid desert with saline ground water. J Arid Environ 59:259–270. doi:10.1016/j.jaridenv.2004. 01.017
  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006
  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. doi:10.1016/j. plantsci.2003.10.024
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116. doi:10.1007/BF02670468
  • Cha-um S, Vejchasarn P, Kirdmanee C (2007a) An effective defensive response in Thai aromatic rice varieties (Oryza sativa L. spp. indica) to sodium chloride salt stress. J Crop Sci Biotechnol 10:123–132
  • Cha-um S, Supaibulwatana K, Kirdmanee C (2007b) Glycinebetaine accumulation, physiological characterizations, and growth efficiency in salt-tolerant and salt-sensitive lines of indica rice (Oryza sativa L. spp. indica) response to salt stress. J Agron Crop Sci 193:157–166. doi:10.1111/j.1439-037X.2007.00251.x
  • Chueca A, Sahawy M, Pagano EA, Górge JL (2002) Chloroplast fructose-1, 6-bisphosphatase:structure and function. Photosynth Res 74:235–249. doi:10.1023/A:1021243110495
  • de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120. doi:10.1016/S0098-8472(02) 00064-3
  • de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA (2005) Changes in growth and in solute concentrations in sorghum leaves and roots during salt recovery. Environ Exp Bot 54:69–76. doi:10.1016/j.envexpbot.2004.06.004
  • Demiral T, Türkan I (2006) Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ Exp Bot 56:72–79. doi: 10.1016/j.envexpbot.2005.01.005
  • Gao Z, Sagi M, Lips SH (1998) Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci 135:149–159. doi:10.1016/S0168-9452(98)00085-5
  • Ghosh S, Bagchi S, Majumder AL (2001) Chloroplast fructose-1,6-bisphosphatase from Oryza differ in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Sci 160:1171–1181. doi:10.1016/S0168-9452(01)00361-2
  • Gibson SI (2000) Plant sugar-response pathways: part of a complex regulatory web. Plant Physiol 124:1532–1539. doi:10.1104/pp. 124.4.1532
  • Gupta AK, Kaur N (2005) Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:101–116. doi:10.1007/BF02703574
  • Hartzendorf T, Rolletschek H (2001) Effects of NaCl salinity on amino acid and carbohydrate contents of Phragmites australis. Aquat Bot 69:195–208. doi:10.1016/S0304-3770(01)00138-3
  • Heidari-Sharifabad HH, Mirzaie-Nodoushan H (2006) Salinityinduced growth and some metabolic changes in three Salsola species. J Arid Environ 67:715–720. doi:10.1016/j.jaridenv. 2006.03.018
  • Hoepfner SW, Botha FC (2004) Purification and characterisation of fructokinase from the culm of sugarcane. Plant Sci 167:645–654. doi:10.1016/j.plantsci.2004.05.020
  • Jiang H, Dian W, Liu F, Wu P (2003) Isolation and characterization of two fructokinase cDNA clones from rice. Phytochem 62:47–52. doi:10.1016/S0031-9422(02)00428-4
  • Karkacier M, Erbas M, Uslu MK, Aksu M (2003) Comparison of different extraction and detection methods for sugars using amino-bonded phase HPLC. J Chromatogr Sci 41:331–333
  • Khelil A, Menu T, Ricard B (2007) Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivars. Plant Physiol Biochem 45:551–559. doi: 10.1016/j.plaphy.2007.05.003
  • Leohakunjit N, Kerdchoechuen O (2007) Aroma enrichment and the change during storage of non-aromatic milled rice coated with extracted natural flavor. Food Chem 101:339–344. doi: 10.1016/j.foodchem.2005.12.055
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148:350–380. doi:10.1016/0076-6879(87)48036-1
  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidant defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099. doi:10.1104/pp.119.3.1091
  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot (Lond) 78:389–398. doi:10.1006/anbo. 1996.0134
  • Mahuren JD, Coburn SP, Slominski A, Wortsman J (2001) Microassay of phosphate provides a general method for measuring the activity of phosphatases using physiological, nonchromogenic substrates such as lysophosphatidic acid. Ann Biochem 298:241–245. doi:10.1006/abio.2001.5402
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659
  • Miao X, Wu Q, Wu G, Zhao N (2003) Sucrose accumulation in saltstressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp. PCC 6803. FEMS Lett 218:71–77. doi: 10.1111/j.1574-6968.2003.tb11500.x
  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot (Lond) 99:1161–1173. doi:10.1093/aob/mcm052
  • Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167. doi:10.1016/j.jplph.2005.12.004
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x
  • Neto ADA, Prisco JT, Enéas-Filho J, de Lacerda CF, Silva JV, da Costa PHA, Gomes-Filho E (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16:31–38
  • Odanaka S, Bennett AB, Kanayama Y (2002) Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol 129:1119–1126. doi:10.1104/pp.000703
  • Olmos E, Hellı´n E (1996) Mechanisms of salt tolerance in a cell line of Pisum sativum: biochemical and physiological aspects. Plant Sci 120:37–45. doi:10.1016/S0168-9452(96)04483-4
  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi: 10.1016/j.ecoenv.2004.06.010
  • Pego JV, Smeekens SCM (2000) Plant fructokinase: a sweet family get-together. Trends Plant Sci 5:531–536. doi:10.1016/S1360-1385(00)01783-0
  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic, Dordrecht
  • Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273. doi:10.1016/j.envexpbot.2005.02.008
  • Price J, Laxmi A, Martin SK, Kang J-C (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150. doi:10.1105/tpc. 104.022616
  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205
  • Shabala SN, Shabala SI, Martynenko AI, Babourina O, Newman IA (1998) Salinity effect on bioelectric activity, growth, Na⁺ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust J Plant Physiol 25:609–616
  • Shannon MC, Rhoades JD, Draper JH, Scardaci SC, Spyres MD (1998) Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Sci 38:394–398
  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81. doi:10.1146/annurev.arplant.51.1.49
  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144. doi:10.1016/S1360-1385(96)80048-3
  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835. doi:10.1104/pp.105.065961
  • Wanichananan P, Kirdmanee C, Vutiyano C (2003) Effect of salinity on biochemical and physiological characteristics in correlation to selection of salt-tolerant ability in aromatic rice (Oryza sativa L.). Sci Asia 29:333–339. doi:10.2306/scienceasia1513-1874. 2003.29.333
  • Watanabe Y, Nakamura Y, Ishii R (1997) Relationship between starch accumulation and activities of the related enzymes in the leaf sheath as a temporary sink organ in rice (Oryza sativa). Aust J Plant Physiol 24:563–569
  • Zeng L (2005) Exploration of relationships between physiological parameters and growth performance of rice (Oryza sativa L) seedlings under salinity stress using multivariate analysis. Plant Soil 268:51–59. doi:10.1007/s11104-004-0180-0
  • Zeng L, Kwon TR, Liu X, Wilson C, Grieve CM, Gregorio GB (2004) Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa L) genotypes with different adaptations to saline soils. Plant Sci 166:1275–1285. doi:10.1016/j.plantsci.2004. 01.005
  • Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003
  • Zeng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affects rice growth and yield components. Agric Water Manage 48:191–206. doi:10.1016/S0378-3774(00)00146-3

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a10aac37-64c4-4a46-87f6-c6238575cba6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.