PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Mn- and Cd-contaminated wild water spinach: in vitro human gastrointestinal digestion studies, bioavailability evaluation, and health risk assessment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Human health may be at risk when consuming edible but metal-contaminated aquatic plants. This present study was conducted to evaluate the bioavailabilities of manganese (Mn) and cadmium (Cd) in metalscontaminated wild water spinach (WWS), Ipomoea aquatic Forssk. through in vitro human gastrointestinal digestions. Additionally, the health risks from consuming the plant were also assessed. Metals-contaminated hydroponic nutrient solutions were used to grow the plants under greenhouse conditions. The plants were harvested after seven days of metal exposure and their edible shoots (stems and leaves) underwent digestions simulated from the human gastrointestinal tract. A standard reference material (peach leaves, SRM 1547) was used to assess the precision and accuracy of the in vitro digestion studies. Results showed that the metal concentrations in plants increased when the treatment concentration increased; the metals concentrations were higher in the raw (RHS) samples than in the cooked (DHS and CHS) samples. The bioavailabilities of Mn and Cd were found to be higher in the intestinal extractions than in the gastric extractions. The health risk index (HRI) showed that the adults averagely aged 44 in Selangor, Malaysia was at risk if they consumed Mn-T1-contaminated cooked (CHS) WWS and Cd-contaminated raw (RHS) and cooked (CHS) WWS at T1 and T2 because their HRI values were more than 1.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.79-93,fig.,ref.

Twórcy

autor
  • Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
  • Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
autor
  • Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
  • Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia

Bibliografia

  • 1. KHAIRIAH J., HABIBAH J., AHMAD MAHIR R., MAIMON A., AMINAH A., ISMAIL B.S. Studies on heavy metal deposits in soils from selected agricultural areas of Malaysia. Adv. Environ. Biol. 3, 3, 2009.
  • 2. GILL M. Heavy metal stress in plants: A review. Int. J. Adv. Res. 2, 6, 2014.
  • 3. SHA Z., YUE Y., CAO L. Measuring and analysis of nonessential element variation in soybean. In: Proceedings of the Seventh International Conference on Measuring Technology and Mechatronics Automation; 13-14 Jun 2015; IEEE: Nanchang, China, pp. 621-625, 2015. Accessed in 7 Mar 2017. Available at; http://ieeexplore.ieee.org/document/7263650/
  • 4. CHOPRA AK., PATHAK C., PRASAD G. Scenario of heavy metal contamination in agricultural soil and its management. J. Appl. Nat. Sci. 1, 1, 2009.
  • 5. HARIPRASAD N.V., DAYANANDA H.S. Environmental impact due to agricultural runoff containing heavy metals–a review. Int. J. Sci. Res. Publ. 3, 5, 2013.
  • 6. SCHIPPER P.N.M., BONTEN L.T.C., PLETTE A.C.C., MOOLENAAR S.W. Measures to diminish leaching of heavy metals to surface waters from agricultural soils. Desalination 226, 1, 2008.
  • 7. SUHAG A., GUPTA R., TIWARI A. Biosorptive removal of heavy metals from wastewater using duckweed. Inter. J. Biomed. Adv. Res. 2, 8, 2011.
  • 8. CRUZ-GARCIA G.S., PRICE L.L. Ethnobotanical investigation of ‘wild’ food plants used by rice farmers in Kalasin, Northeast Thailand. J. Ethnobiol. Ethnomed. 7, 1, 2011.
  • 9. HERNIWANTI, PRIATMADI J.B., YANUWIADI B., SOEMARNO. Water plants characteristic for phytoremediation of acid mine drainage passive treatment. Inter. J. Basic Appl. Sci. 13, 6, 2013.
  • 10. KUMAR V., CHOPRA A.K. Reduction of pollution load of paper mill effluent by phytoremediation technique using water caltrop (Trapa natans L.). Cogent Environ. Sci. 2, 1, 2016.
  • 11. MISHRA V. Accumulation of cadmium and copper from aqueous solutions using Indian lotus (Nelumbo nucifera). AMBIO: J. Hum. Environ. 38, 2, 2009.
  • 12. ROBINSON B., DUWIG C., BOLAN N., KANNATHASAN M., SARAVANAN A. Uptake of arsenic by New Zealand watercress (Lepidium sativum). Sci. Total Environ. 301, 1, 2003.
  • 13. UMAR M.A., WUNZANI D.K. Heavy metals in wild rice from Gure, Kagoro and Kaduna, Kaduna State, Nigeria. Inter. J. Sci. Technol. Res. 2, 5, 2013.
  • 14. HUE N.V., MAI Y. Manganese toxicity in watermelon as affected by lime and compost amended to a Hawaiian acid Oxisol. HortScience 37, 4, 2002.
  • 15. BASILE A, SORBO S, CONTE B, COBIANCHI R.C., TRINCHELLA F., CAPASSO C., CARGINALE V. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Inter. J. Phytoremediation 14, 4, 2012.
  • 16. BHOWMIK S., DATTA B.K., SAHA A.K. Determination of mineral content and heavy metal content of some traditionally important aquatic plants of Tripura, India using atomic absorption spectroscopy. J. Agri. Technol. 8, 4, 2012.
  • 17. LEUNG H.M., DUZGOREN-AYDIN N.S., AU C.K., KRUPANIDHI S., FUNG K.Y., CHEUNG K.C., WONG Y.K., PENG X.L., YE Z.H., YUNG K.K.L., TSUI M.T.K. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): Bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ. Sci. Pollut. Res. Int. 24, 10, 2017.
  • 18. AUSTIN D.F. Water spinach (Ipomoea aquatica, Convolvulaceae): A food gone wild. Ethnobot. Res. Appl. 5, 2007.
  • 19. GÖTHBERG A., GREGER M., BENGTSSON B.E. Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environ. Toxicol. Chem. 21, 9, 2002.
  • 20. EBERT A.W. Promotion of indigenous vegetables in Asia: Conservation and use of selected crops in Indonesia, the Philippines, and Taiwan. Acta Hort. 2011, 2011.
  • 21. ONG H.C., CHUA S., MILOW P. Traditional knowledge of edible plants among the Temuan villagers in Kampung Jeram Kedah, Negeri Sembilan, Malaysia. Sci. Res. Essays 6, 4, 2011.
  • 22. JU Y., ZHUO J., LIU B., LONG C. Eating from the wild: Diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China. J. Ethnobiol. Ethnomed. 9, 1, 2013.
  • 23. 23. SHUMSKY S.A., HICKEY G.M., PELLETIER B., JOHNS T. Understanding the contribution of wild edible plants to rural social-ecological resilience in semi-arid Kenya. Ecol. Soc. 19, 4, 2014.
  • 24. 24. ACHARYA K.P., ACHARYA R. Eating from the wild: Indigenous knowledge on wild edible plants in Parroha VDC of Rupandehi district, Central Nepal. Inter. J. Soc. For. 3, 1, 2010.
  • 25. AZAM F.M.S., BISWAS A., MANNAN A., AFSANA N.A., JAHAN R., RAHMATULLAH M. Are famine food plants also ethnomedicinal plants? An ethnomedicinal appraisal of famine food plants of two districts of Bangladesh. Evid. Based Complement Alternat. Med. 2014, 2014.
  • 26. KANG Y., ŁUCZAJ Ł., KANG J., ZHANG S. Wild food plants and wild edible fungi in two valleys of the Qinling Mountains (Shaanxi, central China). J. Ethnobiol. Ethnomed. 9, 1, 2013.
  • 27. LAROCHELLE S., BERKES F. Traditional ecological knowledge and practice for edible wild plants: Biodiversity use by the Rarámuri, in the Sirerra Tarahumara, Mexico. Int. J. Sust. Dev. World Ecol. 10, 4, 2003.
  • 28. SHUMSKY S., HICKEY G.M., JOHNS T., PELLETIER B., GALATY J. Institutional factors affecting wild edible plant (WEP) harvest and consumption in semi-arid Kenya. Land use policy 38, 2014.
  • 29. UMAR K.J., HASSAN L.G., DANGOGGO S.M., LADAN M.J. Nutritional composition of water spinach (Ipomoea aquatica Forsk.) leaves. J. Appl. Sci. 7, 6, 2007.
  • 30. ONG H.C., MOJIUN P.F.J., MILOW P. Traditional knowledge of edible plants among the Temuan villagers in Kampung Guntor, Negeri Sembilan, Malaysia. Afr. J. Agric. Res. 6, 8, 2011.
  • 31. NUR SHAHIDAH M. Documentation and valuation of plant resources used by the Orang Asli at Kampung Lubuk Ulu Legong, Baling, Kedah. PhD [dissertation], Kuala Lumpur: University of Malaya, 2014. Accessed in 7 Mar 2017. Available at; http://studentsrepo.um.edu.my/4781/3/ Final_TEXT.pdf
  • 32. LI W., LI Z. In situ nutrient removal from aquaculture wastewater by aquatic vegetable Ipomoea aquatica on floating beds. Water Sci. Technol. 59, 10, 2009.
  • 33. RAI U.N., SINHA S. Distribution of metals in aquatic edible plants: Trapa natans (Roxb.) Makino and Ipomoea aquatica Forsk. Environ. Monit. Assess. 70, 3, 2001.
  • 34. WHO. Guidelines for drinking-water quality, 4th edition. World Health Organization (WHO), Geneva, Switzerland. 2011.
  • 35. KUMAR J.N., SONI H., KUMAR R.N., BHATT I. Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. Turk. J. Fish. Aquat. Sci. 8, 2, 2008.
  • 36. BAYSA M.C., ANUNCIO R.R.S., CHIOMBON M.L.G., CRUZ J.P.R.D., RAMELB J.R.O. Lead and cadmium contents in Ipomoea aquatica Forsk. grown in Laguna de Bay. Philipp. J. Sci. 135, 2, 2006.
  • 37. GÖTHBERG A., GREGER M., HOLM K., BENGTSSON B.E. Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J. Environ. Qual. 33, 4, 2004.
  • 38. KUMAR N., BAUDDH K., DWIVEDI N., BARMAN S.C., SINGH D.P. Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential. J. Environ. Biol. 33, 5, 2012.
  • 39. PRUSTY B.A.K., AZEEZ P.A., JAGADEESH E.P. Alkali and transition metals in macrophytes of a wetland system. Bull. Environ. Contam. Toxicol. 78, 5, 2007.
  • 40. FAO/WHO. Contaminants. In: Codex Alimentarius, vol. XVII, Edition 1. Codex Alimentarius Commision, Food and Agriculture Organization/World Health Organization (FAO/WHO), Rome, Italy. 1984.
  • 41. GHANI A., ALI Z., ISHTIAQ M., MAQBOOL M., PARVEEN S. Estimation of macro and micro nutrients in some important medicinal plants of Soon Valley, District Khushab, Pakistan. Afr. J. Biotechnol. 11, 78, 2012.
  • 42. NIRMALI WICKRAMARATNE M., MADURANGA T.M., SANJAYA CHAMARA L.L. Contamination of heavy metals in aquatic vegetables collected from cultivation sites in Sri Lanka. J. Environ. Sci. Toxicol. Food Technol. 10, 11, 2016.
  • 43. MARCUSSEN H., DALSGAARD A., HOLM P.E. Element concentrations in water spinach (Ipomoea aquatica Forssk.), fish and sediment from a wetland production system that receives wastewater from Phnom Penh, Cambodia. J. Environ. Sci. Heal. A 44, 1, 2009.
  • 44. TANEE T., SUDMOON R., THAMSENANUPAP P., CHAVEERACH A. Effect of cadmium on DNA changes in Ipomoea aquatica Forssk. Pol. J. Environ. Stud. 25, 1, 2006.
  • 45. GUAN B.T.H., MOHAMAT-YUSUFF F., HALIMOON N., YONG C.S.Y. Uptake of Mn and Cd by wild water spinach and their bioaccumulation and translocation factors. EnvironmentAsia 10, 1, 2017.
  • 46. JOLLY Y.N., ISLAM A., AKBAR S. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus 2, 1, 2013.
  • 47. LOTFY W.M., EZZ A.M., HASSAN A.A.M. Bioaccumulation of some heavy metals in the liver flukes Fasciola hepatica and F. gigantica. Iran. J. Parasitol. 8, 4, 2013.
  • 48. TARALE P., CHAKRABARTI T., SIVANESAN S., NAOGHARE P., BAFANA A., KRISHNAMURTHI K. Potential role of epigenetic mechanism in manganese induced neurotoxicity. BioMed Res. Int. 2016, 2016.
  • 49. SURI D.J., TANUMIHARDJO S.A. Effects of different processing methods on the micronutrient and phytochemical contents of maize: From A to Z. Compr. Rev. Food Sci. Food Saf. 15, 5, 2016.
  • 50. BHATTACHARYYA M.H. Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures. Toxicol. Appl. Pharm. 238, 3, 2009.
  • 51. YANG L.S., ZHANG X.W., LI Y.H., LI H.R., WANG Y., WANG W.Y. Bioaccessibility and risk assessment of cadmium from uncooked rice using an in vitro digestion model. Biol. Trace Elem. Res. 145, 1, 2012.
  • 52. FEKI-TOUNSI M., HAMZA-CHAFFAI A. Cadmium as a possible cause of bladder cancer: A review of accumulated evidence. Environ. Sci. Pollut. Res. 21, 18, 2014.
  • 53. KOCH W., KARIM M.R., MARZEC Z., MIYATAKA H., HIMENO S., ASAKAWA Y. Dietary intake of metals by the young adult population of Eastern Poland: Results from a market basket study. J. Trace Elem. Med. Biol. 35, 2016.
  • 54. OTHMAN C. Dietary intake of cadmium, copper, lead and zinc from the consumption of cereal foods in Dar es Salaam, Tanzania. Tanz. J. Nat. Appl. Sci. 2, 1, 2012.
  • 55. SONG D., ZHUANG D., JIANG D., FU J., WANG Q. Integrated health risk assessment of heavy metals in Suxian County, South China. Int. J. Environ. Res. Public Health 12, 7, 2015.
  • 56. GODT J., SCHEIDIG F., GROSSE-SIESTRUP C., ESCHE V., BRANDENBURG P., REICH A., GRONEBERG D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1, 1, 2006.
  • 57. ROTH J.A. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol. Res. 39, 1, 2006.
  • 58. BERNARD A. Cadmium & its adverse effects on human health. Indian J. Med. Res. 128, 4, 2008.
  • 59. PEJOVIĆ-MILIĆ A., CHETTLE D.R., MCNEILL F.E. Quantification of manganese in human hand bones: A feasibility study. Phys. Med. Biol. 53, 15, 2008.
  • 60. YUSWIR N.S., PRAVEENA S.M., ARIS A.Z., HASHIM Z. Bioavailability of heavy metals using in vitro digestion model: A state of present knowledge. Rev. Environ. Health 28, 4, 2013.
  • 61. CUOMO V., LUCIANO F.B., MECA G., RITIENI A., MAÑES J. Bioaccessibility of glucoraphanin from broccoli using an in vitro gastrointestinal digestion model. CyTA-J. Food 13, 3, 2015.
  • 62. VALLEJO F., GIL-IZQUIERDO A., PÉREZ-VICENTE A., GARCÍA-VIGUERA C. In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C. J. Agric. Food Chem. 52, 1, 2004.
  • 63. PODSĘDEK A., REDZYNIA M., KLEWICKA E., KOZIOŁKIEWICZ M. Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. BioMed Res. Inter. 2014, 2014.
  • 64. RUTZKE C.J., GLAHN R.P., RUTZKE M.A., WELCH R.M., LANGHANS R.W., ALBRIGHT L.D., COMBS JR., GERALD F., WHEELER R.M. Bioavailability of iron from spinach using an in vitro/human Caco-2 cell bioassay model. Habitation 10, 1, 2004.
  • 65. HU J., WU F., WU S., CAO Z., LIN X., WONG M.H. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere 91, 4, 2013.
  • 66. PAN X.D., WU P.G., JIANG X.G. Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Sci. Rep. 6, 2016.
  • 67. JENA V., DIXIT S., GUPTA S. Risk assessment of heavy metal toxicity through edible vegetables from industrial area of Chhattisgarh. Inter. J. Res. Environ. Sci. Technol. 2, 4, 2012.
  • 68. MAHMOOD A., MALIK R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian J. Chem. 7, 1, 2014.
  • 69. ORISAKWE O.E., NDUKA J.K., AMADI C.N., DIKE D.O., BEDE O. Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria. Chem. Cent. J. 6, 1, 2012.
  • 70. WANG X., SATO T., XING B., TAO S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350, 1, 2005.
  • 71. SINGH A., SHARMA R.K., AGRAWAL M., MARSHALL F.M. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Trop. Ecol. 51, 2, 2010.
  • 72. HAGHIGHITALAB A., KARAMI M., SADEGHI E., SHAHI M. Investigation of heavy metals with some methods on vegetables. Int. J. Agri. Crop Sci. 7, 7, 2014.
  • 73. SRIWICHAI W., COLLIN M., TRANBARGER T.J., BERGER J., AVALLONE S. Improvement of the content in bioaccessible lipophilic micronutrients in raw and processed drumstick leaves (Moringa oleifera Lam.). Food Sci. Technol. 75, 2017.
  • 74. HUSSAIN A., ALAMZEB S., BEGUM S. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem. 136, 3, 2013.
  • 75. ZHANG H., WANG Z.Y., YANG X., ZHAO H.T., ZHANG Y.C., DONG A.J., JING J., WANG J. Determination of free amino acids and 18 elements in freeze-dried strawberry and blueberry fruit using an Amino Acid Analyzer and ICP-MS with micro-wave digestion. Food Chem. 147, 2014.
  • 76. NOWAK D., PIECHUCKA P., WITROWA-RAJCHERT D., WIKTOR A. Impact of material structure on the course of freezing and freeze-drying and on the properties of dried substance, as exemplified by celery. J. Food Eng. 180, 2016.
  • 77. YAP C.K., ISMAIL A., TAN S.G. Background concentrations of Cd, Cu, Pb and Zn in the green-lipped mussel Perna viridis (Linnaeus) from Peninsular Malaysia. Marine Poll. Bull. 46, 8, 2003.
  • 78. AZIZ R., RAFIQ M.T., HE Z., LIU D., SUN K., XIAOE Y. In vitro assessment of cadmium bioavailability in Chinese cabbage grown on different soils and its toxic effects on human health. BioMed Res. Int. 2015, 2015.
  • 79. MAT YUSOF A., MOHAMMAD M., ABDULLAHI M.A., MOHAMED Z., ZAKARIA R., ABDUL WAHAB R. Occurrence of intestinal parasitic contamination in selected consumed local raw vegetables and fruits in Kuantan, Pahang. Trop. Life Sci. Res. 28, 1, 2017.
  • 80. HARMANESCU M., ALDA L.M., BORDEAN D.M., GOGOASA I., GERGEN I. Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chem. Cent. J. 5, 1, 2011.
  • 81. SANTOS E.E., LAURIA D.C., DA SILVEIRA C.P. Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Sci. Total Environ. 327, 1, 2004.
  • 82. DSM. Selangor. Department of Statistics Malaysia (DSM), Putrajaya, Malaysia. 2015. Accessed in 2 Nov 2016. Available at; https://www.statistics.gov.my/index.php?r=column/cone&menu_id=eGUyTm9RcEVZSllmYW45dmpnZHh4dz09
  • 83. NURUL IZZAH A., AMINAH A., MD PAUZI A., LEE Y.H., WAN ROZITA W.M., SITI FATIMAH D. Patterns of fruits and vegetable consumption among adults of different ethnics in Selangor, Malaysia. Inter. Food Res. J. 19, 3, 2012.
  • 84. KHAN S., FAROOQ R., SHAHBAZ S., KHAN M.A., SADIQUE M. Health risk assessment of heavy metals for population via consumption of vegetables. World Appl. Sci. J. 6, 12, 2009.
  • 85. CHITSA H., MTAITA T., TABARIRA J. Nutrient content of water spinach (Ipomoea aquatica) under different harvesting stages and preservation methods in Zimbabwe. Inter. J. Biol. Chem. Sci. 8, 3, 2014.
  • 86. DAN E.U., EBONG G.A. Impact of cooking utensils on trace metal levels of processed food items. Ann. Food Sci. Technol. 14, 2, 2013.
  • 87. PELFRÊNE A., WATERLOT C., GUERIN A., PROIX N., RICHARD A., DOUAY F. Use of an in vitro digestion method to estimate human bioaccessibility of Cd in vegetables grown in smelter-impacted soils: The influence of cooking. Environ. Geochem. Health 37, 4, 2015.
  • 88. RAHMAN M.M., ASADUZZAMAN M., NAIDU R. Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. J. Hazard. Mater. 262, 2013.
  • 89. MORGAN J.N. Effects of processing on heavy metal content of foods. Adv. Exp. Med. Biol. 459, 1999.
  • 90. NASERI M., RAHMANIKHAH Z., BEIYGLOO V., RANJBAR S. Effects of two cooking methods on the concentrations of some heavy metals (cadmium, lead, chromium, nickel and cobalt) in some rice brands available in Iranian Market. J. Chem. Health Risks 4, 2, 2014.
  • 91. YUAN G.F., SUN B., YUAN J., WANG Q.M. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ. Sci. B 10, 8, 2009.
  • 92. KAWASHIMA L.M., SOARES L.M.V. A fractionation study of mineral elements in raw and cooked leaf vegetables consumed in Southern Brazil. Alimentos e Nutrição Araraquara 14, 1, 2009.
  • 93. OMAR N.A., PRAVEENA S.M., ARIS A.Z., HASHIM Z. Bioavailability of heavy metal in rice using in vitro digestion model. Inter. Food Res. J. 20, 6, 2013.
  • 94. BABU M., DWIVEDI D.H., RAM Y.R., MEENA M.L. Bioaccumulation and distribution of heavy metals in water chestnut (Trapa natans var. bispinosa Roxb.) in the Lucknow Region. Afr. J. Agric. 8, 22, 2013.
  • 95. BINDU T., SUMI M.M., RAMASAMY E.V. Decontamination of water polluted by heavy metals with taro (Colocasia esculenta) cultured in a hydroponic NFT system. The Environmentalist 30, 1, 2010.
  • 96. SKORBIŁOWICZ E., SKORBIŁOWICZ M., MALINOWSKA D. Accumulation of heavy metals in organs of aqueous plants and its association with bottom sediments in Bug River (Poland). J. Ecol. Eng. 17, 4, 2016.
  • 97. BRANKOVIĆ S., PAVLOVIĆ-MURATSPAHIĆ D., TOPUZOVIĆ M., GLIŠIĆ R., MILIVOJEVIĆ J., ĐEKIĆ V. Metals concentration and accumulation in several aquatic macrophytes. Biotechnol. Biotechnol. Equip. 26, 1, 2012.
  • 98. INTAWONGSE M., DEAN J.R. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit. Contam. 23, 1, 2006.
  • 99. ODUJEBE F., OYEYIOLA A.O., OLAYINKA K. Use of the physiologically based extraction test for the assessment of bioaccessibility of toxic metals in vegetables grown on contaminated soils. J. Health Pollut. 6, 10, 2016.
  • 100. ETCHEVERRY P., GRUSAK M.A., FLEIGE L.E. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Front. Physiol. 3, 2012.
  • 101. ADAWR. Maximum levels of metal contaminants in food: Australia New Zealand Food Standards Code – Standard 1.4.1 - contaminants and natural toxicants, Table to Clause 2. Australian Department of Agriculture and Water Resources (ADAWR), Canberra, Australia. 2015. Accessed in 1 Nov 2016. Available at; https://www.legislation.gov. au/Details/F2011C00542
  • 102. EC. Commission Regulation: Setting maximum levels for certain contaminants in foodstuffs, No. 1881/2006 of 19 December 2006. European Commission (EC), Brussels, Germany. 2006. Accessed in 31 Oct 2016. Available at; https://health.gov.mt/en/environmental/Documents/ Legislations/Pharmacologically/17regec1881_2006e.pdf
  • 103. HKFEHD CFS. Hong Kong Food Adulteration (Metallic Contamination) Regulations 1997 (cap.132v). Second schedule: Maximum permitted concentration of certain metals in specified foods. Hong Kong Food and Environmental Hygiene Department, Centre for Food Safety (HKFEHD CFS), Kowloon, Hong Kong. 2006. Accessed in 31 Oct 2016. Available at; http://www. legislation.gov.hk/blis_pdf.nsf/4f0db701c6c25d4a4825755c00352e35/05FECBCB00468409482575EE0042BB5B/$FILE/CAP_132V_e_b5.pdf
  • 104. MOH. Malaysian Food Regulations: Maximum permitted proportion of metal contaminant in specified food, Regulation 38, fourteenth schedule, Table 1. Ministry of Health (MOH), Putrajaya, Malaysia. 1985. Accessed in 30 Oct 2016. Available at; http://fsis2.moh.gov.my/UploadFosim/FAR/040810095931F590FOURTEENTH%20SCHEDULE.pdf
  • 105. CHEN Y., WU P., SHAO Y., YING Y. Health risk assessment of heavy metals in vegetables grown around battery production area. Sci. Agric. 71, 2, 2014.
  • 106. CMH. Maximum levels of contaminants in foods: GB2762-2005. Chinese Ministry of Health (CMH), Beijing, China. 2005.
  • 107. FAO/WHO. Codex Alimentarius Commission Food Additives and Contaminants: ALINORM 01/12A. Food and Agriculture Organization/World Health Organization (FAO/WHO), Rome, Italy. 2001.
  • 108. WHO/EU. WHO and EU drinking water quality guidelines for heavy metals and threshold values leading to crop damage. World Health Organization Regional Office for Europe (WHO/EU). Geneva, Switzerland, 1983.
  • 109. ERDEMIR U.S., GUCER S. Fractionation analysis and bioavailability of manganese in spinach (Spinacia oleracea L.) leaves. Chem. Spec. Bioavailab. 25, 4, 2013.
  • 110. FU J., CUI Y. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: The influence of cooking and additives. Food Chem. Toxicol. 59, 2013.
  • 111. CUI Y., FU J., CHEN X. Speciation and bioaccessibility of lead and cadmium in soil treated with metal-enriched Indian mustard leaves. J. Environ. Sci. 23, 4, 2011.
  • 112. FDA. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Food and Drug Administration (FDA), National Academy Press: Washington, DC, United States. 2001.
  • 113. GARCIA-RICO L., LEYVA-PEREZ J., JARA-MARINI M.E. Content and daily intake of copper, zinc, lead, cadmium, and mercury from dietary supplements in Mexico. Food Chem. Toxicol. 45, 9, 2007.
  • 114. LIKUKU A.S., OBUSENG G. Health risk assessment of heavy metals via dietary intake of vegetables irrigated with treated wastewater around Gaborone, Botswana. In: Proceedings of the International Conference on Plant, Marine and Environmental Sciences; 1-2 Jan 2015; IICBEE: Kuala Lumpur, Malaysia, pp. 32-37, 2015. Accessed in 7 Mar 2017. Available at; http://iicbe.org/upload/3022C0115069.pdf
  • 115. WHO/FAO. Joint WHO/FAO food standards program code Alimentarius Commission 13th session, report of the thirty eight session of the codex committee on food hygiene. World Health Organization/Food and Agriculture Organization (WHO/FAO). Texas, USA, 2007.
  • 116. BALKHAIR K.S., ASHRAF M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 23, 1, 2016.
  • 117. JAN F.A., ISHAQ M., KHAN S., IHSANULLAH I., AHMAD I., SHAKIRULLAH M. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J. Hazard. Mater. 179, 1, 2010.
  • 118. IQBAL H.H., TASEER R., ANWAR S., MUMTAZ M., SHAHID N. Human health risk assessment: Heavy metal contamination of vegetables in Bahawalpur, Pakistan. Bull. Environ. Stud. 1, 1, 2016.
  • 119. SOHRABI M., BEIGMOHAMMADI Z., CHERAGHI M., MAJIDIFAR S., JAHANGARD A. Health risks of heavy metals for population via consumption of greenhouse vegetables in Hamadan, Iran. Arch. Hyg. Sci. 4, 4, 2015.
  • 120. KHAN Z.I., AHMAD K., ASHRAF M., YASMEEN S., ASHFAQ A., SHER M. Metal accumulation in a potential winter vegetable mustard (Brassica campestris L.) irrigated with different types of waters in Punjab, Pakistan. Pak. J. Bot. 48, 2, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a1080cbb-ed12-45cf-8dd1-ce60358086b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.