PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 08 |

Tytuł artykułu

The antioxidant enzymes activity in leaves of inter-varietal substitution lines of wheat (Triticum aestivum L.) with different tolerance to soil water deficit

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Understanding of the genetic basis of physiological properties, which are most relevant to water-deficit tolerance would be helpful for genomic-assisted improvement of bread wheat. A set of bread wheat inter-varietal single chromosome substitution lines (ISCSLs) of variety ‘Janetzkis Probat’ (JP) in the genetic background of ‘Saratovskaya’ 29 (S29) were used to reveal the critical chromosomes in wheat genome controlling tolerance to water deficit. The same lines were involved in the identification of chromosomes associated with the activity of antioxidant enzymes that are closely related to the detoxification of H2O2 [catalase (CAT), ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase (GR)]. The recipient cultivar S29 was highly drought tolerant while the donor JP was sensitive. Using non-metric multidimensional scaling of yield components and indices of drought tolerance/susceptibility chromosomes 2A and 4D, substitution in the genetic background of S29 was found to lead to a critical decrease of water-deficit tolerance. The drop of tolerance correlated with a sharp decline of cumulative activity of the catalase and the enzymes of ascorbate–glutathione cycle in wheat leaves. Clear evidence was obtained for the involvement of genes present on the homoeologous group 2 chromosomes in the control of GR and CAT activity. Substitution of the chromosome 4D had a significant reducing impact on the CAT activity level.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

08

Opis fizyczny

p.2455-2465,fig.,ref.

Twórcy

autor
  • Siberian Institute of Plant Physiology and Biochemistry, SB RAS, P.O. Box 317, 664033 Irkutsk, Russia
  • Irkutsk State University, 5, Sukhe-Bator St, Irkutsk 64003, Russia
  • Siberian Institute of Plant Physiology and Biochemistry, SB RAS, P.O. Box 317, 664033 Irkutsk, Russia
  • Siberian Institute of Plant Physiology and Biochemistry, SB RAS, P.O. Box 317, 664033 Irkutsk, Russia
  • Institute of Cytology and Genetics SB RAS, Lavrentiev Ave., 10, 630090 Novosibirsk, Russia
autor
  • Institute of Cytology and Genetics SB RAS, Lavrentiev Ave., 10, 630090 Novosibirsk, Russia
autor
  • Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466, Gatersleben, Germany

Bibliografia

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126
  • Baier M, Noctor G, Foyer C, Dietz KJ (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol 124:823–832
  • Bartosz G (1999) Oxidative stress in plants. Acta Physiol Plant 19:47–64
  • Bencze S, Bamberger Z, Janda T, Balla K, Bedő Z, Veisz O (2011) Drought tolerance in cereals in terms of water retention, photosynthesis and antioxidant enzyme activities. Centr Eur J Biol 6:376–387
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486. doi:10.1104/pp.108.118117
  • De Lamotte F, Vianey-Liaud N, Duviau M, Kobrehel K (2000) Glutathione reductase in wheat grain 1 isolation and characterization. J Agric Food Chem 48:4978–4983. doi:10.1021/jf0003808
  • Dixon DP, Cummins I, Cole DJ, Edwards R (1998) Glutathionemediated detoxification systems in plants. Curr Opin Plant Biol 1:258–266
  • Dobrovolskaya OB, Pshenichnikova TA, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155:285–293. doi: 10.1007/s10681-006-9329-7
  • Dudnikov AJ (2003) Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns. Euphytica 129:89–97
  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–917
  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222. doi:10.1093/jxb/erq152
  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18. doi:10.1104/pp.110.167569
  • Gaidalenok RF, Khrabrova MA, Litkovskaya NP, Kovaleva NM (1995) Development and use of lines with substituted chromosomes in Saratovskaya 29/Janetzkis Probat. In: Proceedings of EWAC Newsletter, the 9th EWAC Conference, Gatersleben-Wernigerode
  • Galiba G, Kocsy G, Kaur-Sawhney R, Sutka J, Galston AW (1993) Chromosomal localization of osmotic and salt stress-induced differential alterations in polyamine content in wheat. Plant Sci 92:203–211
  • Ilyina LG (1989) Breeding of spring bread wheat on South-East. Saratov University, Saratov
  • Khanna-Chopra R, Selote DS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than susceptible wheat cultivar under field conditions. Env Exp Bot 60:276–283
  • Kocsy G, Szalai G, Vagujfalvi A, Stehli L, Orosz G, Galiba G (2000) Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210:295–301
  • Kuol BG (2004) Breeding for drought tolerance in sesame (Sesamum indicum L.) in Sudan. Cuvillier, Göttingen
  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233
  • Luna C, Pastory G, Driscoll S, Groten K (2005) Drought control on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417–423. doi:10.1093/jxb/eri039
  • Maccaferri M, Sanguineti MC, Giuliani S, Tuberosa R (2009) Genomics of tolerance to abiotic stress in the Triticeae. In: Feuillet C, Muehlbauer GI (eds) Genetics and Genomics of the Triticeae. Springer, Dordrecht, pp 481–535. doi:10.1007/978-0-387-77489-3_18
  • Maystrenko OI (1976) Identification and localization of genes controlling leaf hairiness of young plants in common wheat. Russ J Genetics 12:5–15
  • Maystrenko OI (1992) The use of cytogenetic methods in ontogenesis study of common wheat. In: Ontogenetics of Higher Plants Shtiintsa, Kishinev, pp 98-114
  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645. doi:10.1007/s00122-012-1904-9
  • Mitchell-Olds T, Pedersen D (1998) The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics 149:739–747
  • Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/*jarioksa/opetus/metodi/vagantutor.pdf
  • Osipova S, Permyakov A, Permyakova M, Pshenichnikova T, Börner A (2011) Leaf dehydroascorbate reductase and catalase activity is associated with soil drought tolerance in bread wheat. Acta Physiol Plant 33:2169–2177. doi:10.1007/S11738-011-0756-2
  • Pang CH, Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate-glutathione cycle and stress tolerance in plants. In: Anjum NA, Umar S, Chan MT (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 91–113
  • Pestsova E, Salina E, Börner A, Korzun V, Maystrenko OI, Röder MS (2000) Microsatellites confirm the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). Theor Appl Genet 101:95–99
  • Pradedova EV, Isheeva OD, Salyaev RK (2011) Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants. Russ J Plant Physiol 58:210–217. doi:10.1134/S1021443711020166
  • Quarri SA, Guilli M, Calestani C, Steed A, Marmiroli N (1994) Location of a gene regulating drought-induced abscisic acid production in the long arm of chromosome 5A of wheat. Theor Appl Genet 89:794–800
  • Richards R, Rebetzke G, Watt M, Condon A, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Func Plant Biol 37:85–97. doi:10.1071/FP09219
  • Selote DS, Khana-Chopra R (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Phys Plant 121:462–471. doi:10.1111/j.1399-3054.2004.00341.x
  • Sofo A, Cicco N, Paraggio M, Scopa A (2010) Regulation of the ascorbate-glutathione cycle under drought stress. In: Anjum NA, Umar S, Chan MT (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 137–189
  • Thiele V, Seidel A (1990) Chromosomal location of a catalase gene in wheat using rye-wheat- additions. Plant Breed 105:78–79
  • Wu G, Wilen RW, Robertson AJ, Gusta LV (1999) Isolation, Chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol 120:513–520
  • Xue GP, McIntyre CL, Shorter R (2008) Genotypic variation in the expression levels of antioxidative genes in Triticum aestivum and their association with carbon assimilation related traits in abiotic stress prone environments. http://ses.library.usyd.edu.au/bitstream/2123/3252/1/P216.pdf
  • Zhang N, Gibon Y, Gur A, Chen C, Lepak N, Höhne M, Zhang Z, Kroon D, Tschoep H, Stitt M, Bucklar E (2010) Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the maize IBM mapping population. Plant Physiol 154:1753–1765. doi:10.1104/pp.110.165787

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a1039eeb-5ef2-4230-a6eb-94b762dbe350
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.