PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 3 |

Tytuł artykułu

Effect of soil contamination with fluorine on the content of phosphorus in biomass of crops

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this study has been to determine the effect of soil contamination with fluorine on the content of phosphorus in crops. Alongside the simulated fluorine soil pollution, substances neutralizing this xenobiotic, such as lime, charcoal and loam, were applied to soil. Depending on the sensitivity of the plants, the degree of soil pollution with fluorine was: 1) 0, 20, 40 and 60 mg F kg-1 of soil under sensitive crops, i.e. narrow-leaf lupine; 2) 0, 50, 100 and 150 mg F kg-1 of soil under moderately sensitive crops, i.e. seed lucerne; 3) 0, 100, 200 and 300 mg F kg-1 of soil under more tolerant crops, i.e. maize, winter oilseed rape, spring triticale, black radish and phacelia. The content of phosphorus varied, depending on the level of soil contamination with fluorine and substances applied to inactivate this element, as well as on the species and organ of the examined plants. An increasing degree of soil pollution with fluorine contributed to raising the phosphorus content in black radish, in aerial biomass of yellow lupine and in roots of spring triticale. Regarding the maize roots, a reverse dependence was recorded. The highest phosphorus content appeared in roots of winter oilseed rape (8.16 g P kg-1 d.m.) and black radish (7.33 g P kg-1 d.m.), while the lowest one was in roots of spring triticale (0.86 g P kg-1 d.m.). Overall, the applied neutralizing substances resulted in lower concentrations of phosphorus in the analyzed plant organs, with the most univocal influence achieved in aerial biomass of yellow lupine, in roots of narrow-leaf lupine, in aerial mass and roots of black radish and in aerial biomass from the first cut of seed lucerne. In respect of the other plants, the impact of the neutralizing substances on the content of phosphorus was also significant albeit dependent on their species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

3

Opis fizyczny

p.731-742,ref.

Twórcy

autor
  • Chair of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, pl.Lodzki 7, 10-727 Olsztyn, Poland
autor
  • Faculty of Ecology, University of Ecology and Management in Warsaw, Warsaw, Poland

Bibliografia

  • Abdallah F.B., Elloumi N., MezghaniI., Garr ec J-P., Boukhris M. 2006. Industrial fluoride pollution of jerbi grape leaves and the distribution of F, Ca, Mg and P in them. Fluoride, 39(1): 43-48.
  • Elrashidi M.A., Persaud N., Baligar V.C. 1998. Effect of fluoride and phosphate on yield and mineral composition of barley grown on three soils. Commun. Soil Sci. Plant Anal., 29(3-4): 269-283. DOI:10.1080/00103629809369945
  • Facanha A.R., Okorokova-Facanha A.L. 2002. Inhibition of phosphate uptake in corn roots by aluminum-fluoride complexes. Plant Physiol., 129(4): 1763-1772. DOI: 10.1104/pp.001651
  • Fung K.F., Wong M.H. 2002. Effects of soil pH on the uptake of Al, F and other elements by tea plants. J. Sci. Food Agric., 82(1): 146-152. DOI: 10.1002/jsfa.1007
  • Gadi B.R., Verm a P., Ram A. 2012. Influence of NaF on seed germination, membrane stability and some biochemical content in Vigna seedlings. J. Chem. Biol. Phys. Sci., 2(3): 1371-1378.
  • Maclean D.C., Hansen K.S., Schneider R.E. 1992. Amelioration of aluminium toxicity in wheat by fluoride. New Phytol., 121: 81-88.
  • Nowak W. 2006. Biological reclamation of a phosphogypsum dump at the Chemical Plant „Wizów” S. A. Zesz. Nauk. UP Wroc., 545(88): 195-203. (in Polish)
  • Ostr owska A., Gawliński S., Szczubiałka Z. 1991. Methods for analysis and assessment of soil and plant properties. IOŚ, Warszawa, pp. 334. (in Polish)
  • Pyś B.J., Pucek T. 1993. Content of nitrogen and Ca, P, K, Mg in fodder crops cultivated in the area of phosphatic fertilizers production plant in Machów. Arch. Ochr. Środ., 3-4: 173-184. (in Polish)
  • Reddy P.M., Kaur M. 2008. Sodium fluoride induced growth and metabolic changes in Salicornia brachiate Roxb. Water Air Soil Poll., 188: 171-179. DOI: 10.1007/s11270-007-9533-7
  • Sawilska-Rautenstr auch D., Jędra M., Fonberg -Broczek M., Badowski P., Urbanek-Karłowska B. 1998. Fluorine in vegetables and potatoes from Warsaw market place. Rocz. Panstw. Zakl. Hig., 49: 341-346. (in Polish)
  • StatSoft, Inc. 2010. Statistica (data analysis software system), version 10.0. www.statsoft.com.
  • Stevens P.D., McLaughlin J.M., Alston M.A. 1998. Phytotoxicity of the fluoride ion and its uptake from solution culture by Avena sativa and Lycopersicone sculentum. Plant Soil., 200: 119-129. DOI: 10.1023/A:1004392801938
  • Telesiński A., Smolik B., Grabczyńska E. 2010. Formation of adenylate energy charge (AEC) versus the fluorine content in forest soil in the area affected by emission from Police Chemical Plant. J. Elem., 15(2): 355-362. DOI: 10.5601/jelem.2010.15.2.355-362
  • Wyszkowski M., Sivitskaya V. 2014. Changes in the content of some micronutrients in soil contaminated with heating oil after the application of different substances. J. Elem., 19(1): 243-252. DOI: 10.5601/jelem.2014.19.1.593
  • Zbierska J. 1996. Content of macronutrients and fluorine in soil and sward grassland in the area of the impact of phosphate fertilizer plant in Luboń. Pr. Kom. Nauk Rol. Kom. Nauk Leśn., 81: 227-234. (in Polish)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a0e1e545-e27c-42e8-86dc-a287fdf7f71b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.