PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 82 | 4 |

Tytuł artykułu

Ultrastructural and antioxidative changes in lupine embryo axes in response to salt stress

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Embryo axes of lupine (Lupinus luteus L. ‘Mister’) were subjected to 0.1 M NaCl salt stress for 24 and 48 h. The ultrastructure modification and adjustment of antioxidant enzymes activities and izoenzymes profiles were observed. In cells of lupine embryo axes grown for 48 hours in medium with 0.1 M NaCl mitochondria took the forked shape and bulges of the outer mitochondrial membranes appeared. Moreover, the inflating and swelling of rough endoplasmic reticulum (RER) lumen and fragmentation of RER were noticed. The level of H2O2 was higher in salt treated embryo axes after 24 hours and increase of thiobarbituric acid reactive substances was observed after both 24 and 48 h of salt treatment. Native gel electrophoresis showed increased intensities of bands for catalase isozymes in response to salt stress, whereas activity of catalase was higher only in embryo axes grown for 48 h in control conditions. Appearance of two new isoforms of ascorbate peroxidase was observed after 48 h only under control condition, however increased activities were stated for both control and salt-stress condition after 48 h. No changes in isozymes pattern for superoxide dismutase were observed, but significant decrease in superoxide dismutase activity was noticed in relation to time and salt stress. Possible role of these enzymes in salt stress tolerance is discussed. The 0.1 M salt stress is regarded as a middle stress for lupine embryo axes and the efficiency of stress prevention mechanisms is proposed.

Wydawca

-

Rocznik

Tom

82

Numer

4

Opis fizyczny

p.303-311,fig.,ref.

Twórcy

autor
  • Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
  • Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
  • Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • 1. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651–681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
  • 2. Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci. 2005;45(2):437. http://dx.doi.org/10.2135/cropsci2005.0437
  • 3. Munns R. Genes and salt tolerance: bringing them together: Tansley review. New Phytol. 2005;167(3):645–663. http://dx.doi. org/10.1111/j.1469-8137.2005.01487.x
  • 4. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J ExpBot. 2011;62(6):2189–2203. http://dx.doi.org/10.1093/jxb/erq422
  • 5. Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E. A different role for hydrogen peroxide and the antioxidative system under short andlong salt stress in Brassica oleracea roots. J Exp Bot. 2009;61(2):521–535.http://dx.doi.org/10.1093/jxb/erp321
  • 6. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, et al. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol. 2006;141(4):1653–1665. http://dx.doi.org/10.1104/pp.106.082388
  • 7. Shabala S. Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot. 2009;60(3):709–712. http://dx.doi.org/10.1093/jxb/erp013
  • 8. Munns R. Comparative physiology of salt and water stress. Plant Cell Env. 2002;25(2):239–250. http://dx.doi.org/10.1046/j.0016-8025.2001.00808.x
  • 9. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 2003;91(5):503–527. http://dx.doi.org/10.1093/aob/mcg058
  • 10. Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444(2):139–158. http://dx.doi.org/10.1016/j.abb.2005.10.018
  • 11. Tuteja N. Mechanisms of high salinity tolerance in plants. Methods Enzym. 2007;428:419–438. http://dx.doi.org/10.1016/S0076-6879(07)28024-3
  • 12. White PJ, Broadley MR. Chloride in soils and its uptake and movement within the plant: a review. Ann Bot. 2001;88(6):967–988. http://dx.doi.org/10.1006/anbo.2001.1540
  • 13. Wojtyla Ł, Rucińska-Sobkowiak R, Kubala S, Garnczarska M. Lupine embryo axes under salinity stress. I. Ultrastructural response. Acta PhysiolPlant. 35(7):2219–2228. http://dx.doi.org/10.1007/s11738-013-1258-1
  • 14. Heller R. Recherchessur la nutrition minerale des tissusvégétauxcultivé in vitro. Ann Sci Nat Bot. Biol. Végétale. 1953;14:1–223.
  • 15. Borek S, Ratajczak W, Ratajczak L. Ultrastructural and enzymatic research on the role of sucrose in mobilization of storage lipids in germinating yellowlupine seeds. Plant Sci. 2006;170(3):441–452. http://dx.doi.org/10.1016/j.plantsci.2005.09.011
  • 16. Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 2001;125(1):199–208. http://dx.doi.org/10.1104/pp.125.1.199
  • 17. Floryszak-Wieczorek J, Krzywański Z. Lipoxygenase activity and malonaldehyde content in potato tubers inoculated with Phytophthora infestans.Acta Physiol Plant. 1985;7:149–157.
  • 18. Becana M, Aparicio-Tejo P, Irigoyen JJ, Sanchez-Diaz M. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa.Plant Physiol. 82(4):1169–1171. http://dx.doi.org/10.1104/pp.82.4.1169
  • 19. Arasimowicz M, Floryszak-Wieczorek J, Milczarek G, Jelonek T. Nitric oxide, induced by wounding, mediates redox regulation in pelargoniumleaves. Plant Biol. 2009;11(5):650–663. http://dx.doi.org/10.1111/j.1438-8677.2008.00164.x
  • 20. Małecka A, Jarmuszkiewicz W, Tomaszewska B. Antioxidative defense to lead stress in subcellular compartments of pearoot cells. Acta Biochim Pol. 2001;48(3):687–698.
  • 21. Bradford MM. A rapid and sensitive method for thequantitation of microgram of protein utilizing the principle ofprotein-dye binding. Anal Biochem. 1976;72:248–254. http://dx.doi.org/10.1006/abio.1976.9999
  • 22. Wojtyla Ł, Garnczarska M, Zalewski T, Bednarski W, Ratajczak L, Jurga S. A comparative study of water distribution, freeradical production and activation of antioxidativemetabolism in germinating pea seeds. J Plant Physiol. 2006;163:1207–1220. http://dx.doi.org/10.1016/j.jplph.2006.06.014
  • 23. Davis BJ. Disc electrophoresis – II: method and applicationto human serum proteins. Ann N Acad Sci. 1964;121(2):404–427. http://dx.doi.org/10.1111/j.1749-6632.1964.tb14213.x
  • 24. Mittler R, Zilinskas BA. Detection of ascorbate peroxidaseactivity in native gels by inhibition of the ascorbate dependent reduction of nitrobluetetrazolium.Anal Biochem. 1993;212(2):540–546. http://dx.doi.org/10.1006/abio.1993.1366
  • 25. Beauchamp CH, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–287. http://dx.doi.org/10.1016/0003-2697(71)90370-8
  • 26. Asada K, Yoshikawa K, Takahashi M, Maeda Y, Enmanji K. Superoxide dismutase from a blue-green alga, Plectonema boryanum. J Biol Chem. 1975;250:2801–2807.
  • 27. Woodbury W, Spencer AK, Stahmann MA. An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem. 1971;44(1):301–305. http://dx.doi.org/10.1016/0003-2697(71)90375-7
  • 28. Garnczarska M, Wojtyla Ł. Ascorbate and glutathione metabolism in embryo axes and cotyledons of germinating lupine seeds. Biol Plant.2008;52:681–686. http://dx.doi.org/10.1007/s10535-008-0131-3
  • 29. Nakano Y, Asada K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivationby monodehdroascorbate radical. Plant Cell Physiol. 1987;28:131–140.
  • 30. Aebi H. Catalase in vitro. Methods Enzym. 1984;105:121–126. http:// dx.doi.org/10.1016/S0076-6879(84)05016-3
  • 31. Karnowsky MJ. A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol. 1965;27:137–138.
  • 32. Spurr AR. A low viscosity epoxy resin embedding medium forelectron microscopy. J Ultrastruct. Res. 1969;26:31–43. http://dx.doi.org/10.1016/S0022-5320(69)90033-1
  • 33. Shavrukov Y. Salt stress or salt shock: which genes are we studying? J Exp Bot. 2013;64(1):119–127. http://dx.doi.org/10.1093/jxb/ers316
  • 34. Vartapetian BB. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann Bot. 2003;91(2):155–172. http://dx.doi.org/10.1093/aob/mcf244
  • 35. Vassileva V, Simova-Stoilova L, Demirevska K, Feller U. Variety-specific response of wheat (Triticum aestivum L.) leaf mitochondria todrought stress. J Plant Res. 2009;122:445–454. http://dx.doi.org/10.1007/s10265-009-0225-9
  • 36. Zellnig G, Zechmann B, Perktold A. Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves. Protoplasma. 223:221–227. http://dx.doi.org/10.1007/s00709-003-0034-2
  • 37. Livne A, Levin N. Tissue respiration and mitochondrial oxidative phosphorylation of NaCl-treated pea seedlings. Plant Physiol. 1967;42(3):407–414. http://dx.doi.org/10.1104/pp.42.3.407
  • 38. Jolivet Y, Pireaux JC, Dizengremel P. Changes in properties of barley leaf mitochondria isolated from NaCl-treated plants. Plant Physiol.1990;94(2):641–646. http://dx.doi.org/10.1104/pp.94.2.641
  • 39. Jacoby RP, Millar AH, Taylor NL. Wheat mitochondrial proteomes provide new links between antioxidant defense andplant salinity tolerance. J ProtRes. 2010;9(12):6595–6604. http://dx.doi.org/10.1021/pr1007834
  • 40. Ciamporova M, Mistrik I. The ultrastructural response of root cells to stressful conditions. Env Exp Bot. 1993;33(1):11–26. http://dx.doi. org/10.1016/0098-8472(93)90052-H
  • 41. Pareek A, Singla SL. Short-term salinity and high temperature stressassociated ultrastructural alterations in young leaf cells of Oryza sativaL. Ann Bot. 1997;80(5):629–639.
  • 42. Jaspers P, Kangasjärvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plant. 2010;138(4):405–413. http://dx.doi.org/10.1111/j.1399-3054.2009.01321.x
  • 43. Schopfer P, Plachy C, Frahry G. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) andperoxidase in germinating radish seeds controlled by light, gibberellin,and abscisic acid. Plant Physiol. 2001;125(4):1591–1602. http://dx.doi.org/10.1104/pp.125.4.1591
  • 44. Kuźniak E, Urbanek H. The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol Plant. 2000;22(2):195–203. http://dx.doi.org/10.1007/s11738-000-0076-4
  • 45. Kornas A, Kuźniak E, Ślesak I, Miszalski Z. The key role of the redox status in regulation of metabolism in photosynthesizing organisms. ActaBiochim Pol. 2010;57(2):143–151.
  • 46. Gapper C, Dolan L. Control of plant development by reactive oxygen species. Plant Physiol. 2006;141(2):341–345. http://dx.doi.org/10.1104/pp.106.079079
  • 47. Rubio MC, Bustos-Sanmamed P, Clemente MR, Becana M. Effects of salt stress on the expression of antioxidant genes and proteins in the modellegume Lotus japonicus. New Phytol. 2009;181(4):851–859. http://dx.doi.org/10.1111/j.1469-8137.2008.02718.x
  • 48. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930. http://dx.doi.org/10.1016/j.plaphy.2010.08.016
  • 49. Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relativeLycopersicon pennellii. Physiol Plant. 1998;104(2):169–174. http://dx.doi.org/10.1034/j.1399-3054.1998.1040204.x
  • 50. Koca H, Ozdemir F, Turkan İ. Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant. 2006;50(4):745–748. http://dx.doi.org/10.1007/s10535-006-0121-2
  • 51. Bor M, Özdemir F, Türkan İ. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beetBeta maritima L. Plant Sci. 2003;164(1):77–84. http://dx.doi.org/10.1016/S0168-9452(02)00338-2
  • 52. Koca H, Bor M, Özdemir F, Fridovich I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Env Exp Bot. 2007;60(3):344–351. http://dx.doi.org/10.1016/j. envexpbot.2006.12.005
  • 53. Hediye Sekmen A, Türkan İ, Takio S. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritimaand salt-sensitive Plantago media. Physiol Plant. 2007;131(3):399–411.http://dx.doi.org/10.1111/j.1399-3054.2007.00970.x
  • 54. Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) – differential response in salt-tolerant and sensitive varieties. Plant Sci. 2003;165(6):1411–1418. http://dx.doi.org/10.1016/j.plantsci.2003.08.005
  • 55. Demiral T, Turkan İ. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salttolerance. Env Exp Bot. 2005;53(3):247–257. http://dx.doi.org/10.1016/j.envexpbot.2004.03.017
  • 56. Sairam RK, Srivastava GC. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 2002;162(6):897–904. http://dx.doi.org/10.1016/S0168-9452(02)00037-7
  • 57. Khan MH, Singha KLB, Panda SK. Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress. Acta Physiol Plant.2002;24(2):145–148. http://dx.doi.org/10.1007/s11738-002-0004-x
  • 58. Mittova V, Tal M, Volokita M, Guy M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response tosalt-induced oxidative stress in the wild salt-tolerant tomato speciesLycopersicon pennellii. Plant Cell Env. 2003;26(6):845–856. http://dx.doi.org/10.1046/j.1365-3040.2003.01016.x
  • 59. Mittova V, Guy M, Tal M, Volokita M. Salinity up‐regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt‐toleranttomato species Lycopersicon pennellii. J Exp Bot. 2004;55(399):1105–1113.http://dx.doi.org/10.1093/jxb/erh113
  • 60. Raven EL. Peroxidase-catalyzed oxidation of ascorbate structural, spectroscopic and mechanistic correlations in ascorbate peroxidase. In: Holzenburg A, Scrutton NS, editors. Enzyme-catalyzed electron and radical transfer.New York, NY: Springer; 2002. p. 317–349. (Subcellular biochemistry). http://dx.doi.org/10.1007/0-306-46828-X_10
  • 61. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61(2):192–208. http://dx.doi.org/10.1007/s00018-003-3206-5
  • 62. Kliebenstein DJ, Monde RA, Last RL. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization.Plant Physiol. 1998;118(2):637–650. http://dx.doi.org/10.1104/pp.118.2.637
  • 63. Lee DH, Kim YS, Lee CB. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol.2001;158(6):737–745. http://dx.doi.org/10.1078/0176-1617-00174
  • 64. Sreenivasulu N, Grimm B, Wobus U, Weschke W. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitiveseedlings of foxtail millet (Setaria italica). Physiol Plant. 2000;109(4):435– 442. http://dx.doi.org/10.1034/j.1399-3054.2000.100410.x
  • 65. Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem FV, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants asstress-mimic models. J Exp Bot. 2010;61(15):4197–4220. http://dx.doi.org/10.1093/jxb/erq282
  • 66. Garnczarska M, Wojtyla Ł. Differential response of antioxidative enzymes in embryonic axes and cotyledons of germinating lupine seeds. Acta Physiol Plant. 2008;30(4):427–432. http://dx.doi.org/10.1007/s11738-008-0138-6
  • 67. Gondim FA, Gomes-Filho E, Costa JH, Mendes Alencar NL, Prisco JT. Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiol Biochem. 2012;56:62–71. http://dx.doi.org/10.1016/j.plaphy.2012.04.012
  • 68. Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf- Bouteau H. Catalase is a key enzyme in seed recovery from ageing duringpriming. Plant Sci. 2011;181(3):309–315. http://dx.doi.org/10.1016/j.plantsci.2011.06.003

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9fc46863-6908-40a9-a0e2-f552d63275b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.