PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 74 | 11 |

Tytuł artykułu

Changes in selected biochemical parameters (including FGF21) during subclinical and clinical ketosis in dairy cows

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.

Wydawca

-

Rocznik

Tom

74

Numer

11

Opis fizyczny

p.727-730,ref.

Twórcy

autor
  • College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-tech Industrial Development Zone, Daqing 163319, PR China
autor
  • College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-tech Industrial Development Zone, Daqing 163319, PR China
autor
  • College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-tech Industrial Development Zone, Daqing 163319, PR China
autor
  • College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-tech Industrial Development Zone, Daqing 163319, PR China

Bibliografia

  • Bian S. B., Huang K. H.: Survey of Incidence of Hypocalcemia, Ketosis of Dairy Cows in Shanghai Area. Chinese J. of Animal Sci. 2018, 54, 147-150.
  • Bobe G., Young J. W., Beitz D. C.: Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. of Dairy Sci. 2004, 87, 3105-3124.
  • Cheng X., Zhu B., Jiang F., Fan H.: Serum FGF-21 levels in type 2 diabetic patients. Endocrine Research 2011, 36, 142-148.
  • Coskun T., Bina H. A., Schneider M. A., Dunbar J. D., Hu C. C., Chen Y., Moller D. E., Kharitonenkov A.: FGF21 corrects obesity in mice. Endocrinology 2008, 149, 6018-6027.
  • Duffield T. F., Lissemore K. D., McBride B. W, Leslie K. E.: Impact of hyperketonemia in early lactation dairy cows on health and production. J. of Dairy Sci. 2009, 92, 571-580.
  • Fisher F. M., Estall J. L., Adams A. C., Antonellis P. J., Bina H. A., Flier J. S., Kharitonenkov A., Spiegelman B. M., Maratos-Flier E.: Integrated Regulation Of Hepatic Metabolism By Fibroblast Growth Factor 21 (Fgf21) In Vivo. Endocrinology 2011, 152, 2996-3004.
  • Gómezsámano M. Á., Grajalesgómez M., Zuarthvázquez J. M., Navarro-Flores M. F., Martínez-Saavedra M., Juárez-León Ó. A., Morales-García M. G., Enríquez-Estrada V. M., Gómez-Pérez F. J., Cuevas-Ramos D.: Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biology 2017, 11, 335-341.
  • Heuer C., Luinge H. J., Lutz E. T., Lutz G., Schukken Y. H., van der Maas J. H. H., Wilmink T. M., Noordhuizen.: Determination of acetone in cow milk by Fourier transform infrared spectroscopy for the detection of subclinical ketosis. J. of Dairy Sci. 2001, 84, 575-582.
  • Hove K.: Insulin secretion in lactating cows: responses to glucose infused intravenously in normal, ketonemic, and starved animals. J. of Dairy Sci. 1978, 61, 1407-1413.
  • Jiang J., Qu P., Wei X., Liu Y. F., Li T. Y., Liu Y. X.: Serum hs-CRP, IL-6 and TNF-α levels and their contributions to metabolic syndrome in children. J. of Third Military Medical University 2011, 14, 1530-1534.
  • Kharitonenkov A., Shiyanova T. L., Koester A., Ford A. M., Micanovic R., Galbreath E. J.: Fgf-21 as a novel metabolic regulator. J. of Clinical Investigation 2005, 115, 1627-1635.
  • Kliewer S. A., Mangelsdorf D. J., Blackburn G. L.: Fibroblast growth factor 21: from pharmacology to physiology. Am. J. of Clinical Nutrition 2010, 91, 254S.
  • Kovacevic Z., Cincovic M. R., Stojanovic D.: Influence of ketoprofen application on lipid mobilization, ketogenesis and metabolic status in cows during early lactation. Kafkas Üniv. Vet. Fak. Derg. 2016, 22, 7-12.
  • McArt J. A., Nydam D. V., Oetzel G. R., Overton T. R., Ospina P. A.: Elevated non-esterified fatty acids and beta-hydroxybutyrate and their association with transition dairy cow performance. Vet. J. 2013, 198, 560-570.
  • Ohtsuka H., Koiwa M., Hatsugaya A., Kudo K., Hoshi F., Itoh N., Yokota H., Okada H., Kawamura S.: Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver. J. of Vet. Med. Sci. 2001, 63, 1021-1025.
  • Ospina P. A., Nydam D. V., Stokol T., Overton T. R.: Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J. of Dairy Sci. 2010, 93, 3595-3601.
  • Patel D. S., Gami B. N., Shah H. N., Parchwani D. N., Haridas N.: Leptin, Adiponectin and its Molar Ratio as a Biomarker in the Diagnosis of Metabolic Syndrome. Indian J. of Physiology & Pharmacology 2015, 59, 290-297.
  • Potthoff M. J., Inagaki T., Satapati S., Ding X., He T., Goetz R., Mohammadi M., Finck B. N., Mangelsdorf D. J., Kliewer S. A., Burgess S. C.: FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. of the National Academy of Sciences 2009, 106, 10853-10858.
  • Schoenberg K. M., Giesy S. L., Harvatine K. J., Waldron M. R., Cheng C., Kharitonenkov A., Boisclair Y. R.: Plasma FGF21 is elevated by the intense lipid mobilization of lactation. Endocrinology 2011, 152, 4652-4661.
  • Yan H., Xia M., Chang X., Xu Q., Bian H., Zeng M., Rao S., Yao X., Tu Y., Jia W., Gao X.: Circulating Fibroblast Growth Factor 21 Levels Are Closely Associated with Hepatic Fat Content: A Cross-Sectional Study 2011, 6, 24895.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9f973dde-80a6-4393-878e-4ce356062904
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.