PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 579 |

Tytuł artykułu

Współczesne możliwości stosowania nanotechnologii w doskonaleniu katalizy enzymatycznej

Treść / Zawartość

Warianty tytułu

EN
Novel applications of nanotechnology in the improving of enzymatic catatysis

Języki publikacji

PL

Abstrakty

PL
W opracowaniu przedstawiono nowe kierunki doskonalenia biokatalizy z wykorzystaniem nanomateriałów. Scharakteryzowano ich właściwości oraz metody modyfikacji ukierunkowane na skuteczność wiązania biokatalizatorów i efektywność ich działania. Szczególną uwagę zwrócono na procedury immobilizacji enzymów w strukturze nanonośników, wskazując na selekcjonującą rolę wielkości nanoporów oraz pozyskanie nowych właściwości tak skonstruowanego biokatalizatora, np. zwiększonej stabilności czy szybkości transportu substratu do enzymu i produktu reakcji na zewnątrz. Przedstawiono korzyści wynikające z zastosowania nanonośników o właściwościach magnetycznych – ułatwiających procedury wydajnego odzysku katalizatora po przeprowadzonej reakcji, zapobiegających tym samym zanieczyszczaniu produktu finalnego białkiem enzymatycznym. Poruszono temat biokatalizy w układach dwufazowych, wskazując na funkcjonalność proponowanych rozwiązań – tj. ułatwionego dotarcia molekuł enzymu do powierzchni międzyfazowej, np. olej/woda. Omówiono rolę środowiska nanonośników w odniesieniu do unieruchamianych enzymów, podając liczne przykłady badań dowodzących pozytywnego wpływu struktury powierzchni nanomateriałów na właściwości i stabilność wiązanych biokatalizatorów. Wskazano na korzyści związane ze stosowaniem nanobiokatalizy w praktyce – sprzyjające ograniczeniu kosztów, eliminacji procesów chemicznych oraz poprawie bezpieczeństwa produkowanej żywności.
EN
Enzymes are natural biocatalysts on a nanometer scale and are used in various industrial processes and products, including pharmaceuticals and detergents. Their application is being extended into new fields: the design of functional nanocomposites, finechemical synthesis, biosensors and bioremediation. However, the short lifespan of enzymes limits their application. There have been many approaches to improve enzyme stability. One of such methods is immobilization onto or into large structures, through simple adsorption, covalent attachment or encapsulation. New opportunities for enzyme stabilization, offering improved intrinsic and operational stabilities, have arisen with the development of nanomaterials and nanostructured materials. These materials can ensure large surface areas, pore sizes tailored to protein molecular dimensions, functional surfaces, multiple sites for interaction or attachment and facilitated diffusion and activity. This paper describes the perspective of materials and methods to improve the biocatalytic activity. Based on the available information and a literature search of selected examples of nanobiocatalyst production methods, their property characteristics and application directions were presented. Particular attention was paid to the procedure of enzyme immobilization on/in nanostructured materials, indicating the screening role of nanopore sizes and the influence of nanomaterials on the structure and function of proteins. Thus, a modified enzyme was characterized by maximized stability with the additional advantages of possible modulation of the catalytic specificity and lower transfer resistance to respond to the diffusion problem and lower operational cost. This review also presents the benefits of using magnetic nanoparticles in enzyme immobilization which include easy separation of an enzyme complex from the reaction mixture, thereby preventing the enzyme contamination of the final product. Moreover, biocatalysis in two-phase systems and the effect of the nanoscale environment on enzyme stability was described. Nanobiocatalysis has emerged as a rapidly growing area. The mobility, solution behaviors and interfacial properties of nanoscale materials can introduce unique properties to nanoscale biocatalyst systems, which may develop into a crucial class of biocatalyst that differs from traditional immobilized enzymes in terms of preparation and catalytic efficiency. Nanobiocatalysis has potential application in various fields, such as proteomic analysis, biofuel production and in other environmental and biomedical areas. In the future, new mechanisms and phenomena may continue to appear.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

579

Opis fizyczny

s.37-47,rys.,bibliogr.

Twórcy

  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Olsztyn
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Olsztyn
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Olsztyn

Bibliografia

  • Ali M., Winterer M., 2010. ZnO nanocrystals: surprisingly alive. Chem. Mater. 22, 85–91.
  • Ansari S.A., Husain Q., 2012. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 30, 512–523.
  • Ansari S.A, Satar R., Alam F., Alqahtani M.H., Chaudhary A.G., Naseer M.I., Karim S., Sheikh I.A., 2012. Cost effective surface functionalization of silver nanoparticles for high yield immobilization of Aspergillus oryzae β-galactosidase and its application in lactose. Hydrolysis. Proc. Biochem. 47, 2427–2433.
  • Crespilho F.N., Gica M.E., Floresu M., Nart F.C., Oliveira Jr. O.N., Brett C.M.A., 2006. A strategy for enzyme immobilization on layer-by-layer dendrimer–gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Commun. 8, 1665–1670.
  • Fang Z., Zhang F., Zeng H.Y., Guo F., 2011. Production of glucose by hydrolysis of cellulose at 423 K in the presence of activated hydrotalcite nanoparticles. Biores. Technol. 102, 8017–8021.
  • Głód D. Adamczak M., Bednarski W., 2014. Wybrane aspekty zastosowania nanobiotechnologii w produkcji żywności. Żywność. Nauka. Technologia. Jakość 5(96), 36–52.
  • Govardhan C.P., 1999. Crosslinking of enzymes for improved stability and performance. Curr. Opin. Biotechnol. 10, 331–335.
  • Guncheva M., Paunova K., Dimitrov M., Yancheva D., 2014. Stabilization of Candida rugosa lipase on nanosized zirconia-based materials. J. Mol. Catal. B Enzym. 108, 43–50.
  • Han Y-J., Watson J.T., Stucky G.D., Butler A., 2002. Catalytic activity of mesoporous silicate-immobilized chloroperoxidase. J. Mol. Catal. B Enzym. 17, 1–8.
  • Hasan F., Shah A.A., Hameed A., 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235–251.
  • Husain Q., Ansari S.A., Alam F., Azam A., 2011. Immobilization of Aspergillus oryzae β-galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int. J. Biol. Micromol. 49(1), 37–43.
  • Illanes A., Cauerhff A., Wilson L., Castro G.R., 2012. Recent trends in biocatalysis engineering. Bioresour. Technol. 115, 48–57.
  • Johnson A.K., Zawadzka A.M., Deobald L.A., Crawford R.L., Paszczynski A.J., 2008. Novel method for immobilization of enzymes to magnetic nanoparticles. J. Nanopart. Res. 10, 1009–1025.
  • Kim J., Grate J.W., Wang P., 2006a. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017–1026.
  • Kim J., Jia H., Lee C., Chung S., Kwak J.H., Shina Y., Dohnalkova A., Kim B.-G., Wang P., Grate W.J., 2006b. Single enzyme nanoparticles in nanoporous silica: a hierarchical approach to enzyme stabilization and immobilization. Enzyme Microbiol. Technol. 39(3), 474–480.
  • Kim M.I., Kim J., Lee J., Jia H., Na H.B., Youn J.K., Kwak J.H., Dohnalkova A., Grate J.W., Wang P., Hyeon T., Park H.G., Chang H.N., 2007. Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96, 210–218.
  • Kim J., Grate J.W., Wang P., 2008. Nanobiocatalysis and its potential applications. Trends Biotechnol. 26(11), 639–646.
  • Lee J.H., Hwang E.T., Kim B.C., Lee S.M., Sang B.I., Choi Y.S., Kim J., Gu M.B., 2007. Stable and continuous long-term enzymatic reaction using an enzyme-nanofiber composite. Appl. Microbiol. Biotechnol. 75, 1301–1307.
  • Liu W., Zhang S., Wang P., 2009. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration. J. Biotechnol. 139, 102–107.
  • Mahapatro A., Kumar A., Kalra B., Gross R.A. 2004. Solvent free adipic acid/1,8 octanediol condensation polymerization characterized by Candida antarctica B lipase. Macromolecules 37, 35–40.
  • Mak K.H., Yu C.Y., Kuan I.C., Lee S.L., 2009. Immobilization of Pseudomonas cepacia lipase onto magnetic nanoparticles for biodiesel production. Sci. Technol. Vision. 5, 19–23.
  • Marszałł M.P., Siódmiak T., 2012. Immobilization of Candida rugosa lipase onto magnetic beads for kinetic resolution of (R,S)-ibuprofen. Catal. Commun. 24, 80–84.
  • Miletić N., Abetz V., Ebert K., Loos K., 2010. Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromol. Rapid. Commun. 31, 71–74.
  • Nair S., Kim J., Crawford B., Kim S.H., 2007. Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules 8, 1266–1270.
  • Netto C.G.C.M., Toma H.E., Andrade L.H., 2013. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J. Mol. Catal. B Enzym. 85–86, 71–92.
  • Pan C., Hu B., Li W., Sun Y., Ye H., Zeng X., 2009. Novel and efficient method for immobilization and stabilization of β-D-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. Mol. Catal. B Enzym. 61, 208–215.
  • Park A.R., Oh D.K., 2010. Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 1279–1286.
  • Pavlidis I.V., Patila M., Bornscheuer U.T., Gournis D., Stamatis H., 2014. Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol. 32(6), 312–320.
  • Say R., Keçili R., Biçen Ö., Şişman F.Y., Hür D., Denizli A., Ersöz A., 2011. A novel nanoprotein particle synthesis: Nanolipase. Process Biochem. 46, 1688–1692.
  • Talbert J.N., Goddard J.M., 2013. Characterization of lactase-conjugated magnetic nanoparticles. Process Biochem. 48, 656–662.
  • Srivastava N., Rawat R., Sharma R., Oberoi H.S. Srivastava M., Singh J., 2014. Effect of nickel–cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS (class: Eurotiomycetes). Appl. Biochem. Biotechnol. 174, 1092–1103.
  • Verma M.L., Barrow C.J., Kennedy J.F., Puri M., 2012. Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles characterization and lactose hydrolysis. Int. J. Biol. Macromol. 1, 50(2), 432–437.
  • Wang L., Zhu G., Wang P., Zhang Newby B.M., 2005. Self-assembling of polymer-enzyme conjugates at oil/water interfaces. Biotechnol. Prog. 21, 1321–1328.
  • Wang P., 2006. Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17, 574–579.
  • Wang Q., Zhou L., Jiang Y., Gao J., 2011. Improved stability of the carbon nanotubes-enzyme bioconjugates by biomimetic silicification. Enzyme Microb. Technol. 49, 11–16.
  • Xu J., Zeng F., Wu S., Liu X., Hou C., Tong Z., 2001. Gold nanoparticles bound on microgel particles and their application as an enzyme support. Nanotechnology 18, 265–273.
  • Yang Z., Si S., Zhang C., 2008. Magnetic single-enzyme nanopraticles with high activity and stability. Biochem. Biophys. Res. Commun. 367, 169–175.
  • Zhang C., Luo S., Chen W., 2013a. Activity of catalase adsorbed to carbon nanotubes: Effects of carbon nanotube surface properties. Talanta 113, 142–147.
  • Zhang C., Wang H., Liu F., Wang L., He H., 2013b. Magnetic core–shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose. Cellulose 20, 127–134.
  • Zhao X., Lv L., Pan B., Hang W., Hang S., Zhang Q., 2011. Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J. 170, 381–394.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9f90848a-928d-4402-8b95-36c6ce9a3fbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.