PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

GSK-3β-mediated regulation of cadmiuminduced cell death and survival

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Previous studies indicated that cadmium (Cd) increases PI3-kinase/Akt phosphorylation, resulting in an alteration in GSK-3β activity. However, the mechanism of Cd-induced endoplasmic reticulum (ER) stress in neuronal cells has yet to be studied in needs further elucidation. We examined the role of GSK-3β in Cd-induced neuronal cell death and the related downstream signaling pathways. Methods: SH-SY5Y human neuroblastoma cells were treated with 10 or 20 μM BAPTA-AM and 1 μM wortmannin for 30 min and then incubated with 25 μM Cd for 12 h. Apoptotic cells were visualized via DAPI and PI staining. Data were evaluated with one-way analysis of variance (ANOVA) followed by Student’s t-test. Data are expressed as the means ± SD of experiments performed at least three times. Results: Treatment of human neuronal SH-SY5Y cells with Cd induced ER, stress as evidenced by the increased expression of GRP78, which is a marker of ER stress. Cd exposure significantly increased the phosphorylation of Akt at thr308 and ser473 and that of GSK-3β at ser9 in a time-dependent manner, while the total protein levels of GSK-3β and Akt did not change. Cd-induced apoptosis was higher in GSK-3β-knockdown cells than in normal cells. Conclusions: Our data suggest that Akt/GSK-3β signaling activated by Cd is involved in neuronal cell surviva

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-10,fig.,ref.

Twórcy

autor
  • Division of Brain Diseases, Center for Biomedical Science, National Institute of Health, Center for Disease Control & Prevention, Osong Health Technology Administration Complex, 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, South Korea
autor
  • Division of Brain Diseases, Center for Biomedical Science, National Institute of Health, Center for Disease Control & Prevention, Osong Health Technology Administration Complex, 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, South Korea
autor
  • Division of Brain Diseases, Center for Biomedical Science, National Institute of Health, Center for Disease Control & Prevention, Osong Health Technology Administration Complex, 187, Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, South Korea
autor
  • Division of Biobank for Health Sciences, Center for Genome Science, National Institute of Health, Center for Disease Control & Prevention, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, South Korea

Bibliografia

  • 1. Kwon OY, Kim YJ, Choi Y, Kim H, Song C, Shong M. The endoplasmic reticulum chaperone GRP94 is induced in the thyrocytes by cadmium. Z Naturforsch C. 1999;54(7–8):573–7.
  • 2. Timblin CR, Janssen YM, Goldberg JL, Mossman BT. GRP78, HSP72/73, and cJun stress protein levels in lung epithelial cells exposed to asbestos, cadmium, or H2O2. Free Radic Biol Med. 1998;24(4):632–42.
  • 3. Kim SD, Moon CK, Eun SY, Ryu PD, Jo SA. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commun. 2005;328(1):326–34.
  • 4. Lee SA, Dritschilo A, Jung M. Role of ATM in oxidative stress-mediated c-Jun phosphorylation in response to ionizing radiation and CdCl2. J Biol Chem. 2001;276(15):11783–90.
  • 5. Rockwell P, Martinez J, Papa L, Gomes E. Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal. 2004;16(3):343–53.
  • 6. Liu H, Bowes RC 3rd, van de Water B, Sillence C, Nagelkerke JF, Stevens JL. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem. 1997;272(35):21751–9.
  • 7. Kim SW, Cheon HS, Kim SY, Juhnn YS, Kim YY. Cadmium induces neuronal cell death through reactive oxygen species activated by GADD153. BMC Cell Biol. 2013;14(4):1–9.
  • 8. Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 2004;11(4):372–80.
  • 9. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 2002;109(4):525–32.
  • 10. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, et al. Caspase-12 mediates endoplasmic-reticulumspecific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403(6765):98–103.
  • 11. Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2000;23(5):222–9.
  • 12. Sherman MY, Goldberg AL. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron. 2001;29(1):15–32.
  • 13. Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H, Voigtlander T. Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol. 2006;65(4):348–57.
  • 14. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116(Pt 7):1175–86.
  • 15. Harwood AJ. Regulation of GSK-3: a cellular multiprocessor. Cell. 2001;105(7):821–4.
  • 16. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65(4):391–426.
  • 17. Chong ZZ, Li F, Maiese K. Cellular demise and inflammatory microglial activation during beta-amyloid toxicity are governed by Wnt1 and canonical signaling pathways. Cell Signal. 2007;19(6):1150–62.
  • 18. Grimes CA, Jope RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem. 2001;78(6):1219–32.
  • 19. Lesort M, Jope RS, Johnson GV. Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem. 1999;72(2):576–84.
  • 20. Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW, et al. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci U S A. 2000;297(20):11074–9.
  • 21. Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science. 2008;320(5876):667–70.
  • 22. Thevenod F. Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol. 2009;238(3):221–39.
  • 23. Berridge MJ, Bootman MD, Lipp P. Calcium–a life and death signal. Nature. 1998;395(6703):645–8.
  • 24. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11–21.
  • 25. Li M, Kondo T, Zhao QL, Li FJ, Tanabe K, Arai Y, et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+−calpain and caspase-mitochondria- dependent pathways. J Biol Chem. 2000;275(50):39702–9.
  • 26. Long GJ. The effect of cadmium on cytosolic free calcium, protein kinase C, and collagen synthesis in rat osteosarcoma (ROS 17/2.8) cells. Toxicol Appl Pharmacol. 1997;143(1):189–95.
  • 27. Wang Z, Templeton DM. Induction of c-fos proto-oncogene in mesangial cells by cadmium. J Biol Chem. 1998; 1273(1):73–9.
  • 28. Kostrzewska A, Sobieszek A. Diverse actions of cadmium on the smooth muscle myosin phosphorylation system. FEBS Lett. 1990;263(2):381–4.
  • 29. Kim J, Sharma RP. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages. Toxicol Sci. 2004;81(2):518–27.
  • 30. Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL. Methamphetamine induces neuronal apoptosis via crosstalks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J. 2004;18(2):238–51.
  • 31. Duronio V. The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J. 2008;415(3):333–44.
  • 32. Song L, De Sarno P, Jope RS. Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stressinduced caspase-3 activation. J Biol Chem. 2002;277(47):44701–8.
  • 33. Vene R, Larghero P, Arena G, Sporn MB, Albini A, Tosetti F. Glycogen synthase kinase 3beta regulates cell death induced by synthetic triterpenoids. Cancer Res. 2008;68(17):6987–96.
  • 34. Brama M, Gnessi L, Basciani S, Cerulli N, Politi L, Spera G, et al. Cadmium induces mitogenic signaling in breast cancer cell by an ERalpha-dependent mechanism. Mol Cell Endocrinol. 2007;264(1–2):102–8.
  • 35. Kim SM, Park JG, Baek WK, Suh MH, Lee H, Yoo SK, et al. Cadmium specifically induces MKP-1 expression via the glutathione depletion-mediated p38 MAPK activation in C6 glioma cells. Neurosci Lett. 2008;440(3):289–93.
  • 36. Misra UK, Gawdi G, Pizzo SV. Induction of mitogenic signalling in the 1LN prostate cell line on exposure to submicromolar concentrations of cadmium+. Cell Signal. 2003;15(11):1059–70.
  • 37. Ougolkov AV, Bone ND, Fernandez-Zapico ME, Kay NE, Billadeau DD. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007;110:735–42.
  • 38. Maurer U, Preiss F, Brauns-Schubert P, Schlicher L, Celine C. GSK-3- at the crossroads of cell death and survival. J Cell Sci. 2014;127:1369–78.
  • 39. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11(4):381–9.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9f0d8903-5040-4583-8a7e-1647c0195d70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.