PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 |

Tytuł artykułu

An artificial neural network approach to predicting electrostatic separation performance for food waste recovery

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study presents the empirical exploration of food waste recovery throughout the electrostatic separation process. In addition, the paper discusses the potential of artificial neural network (ANN) in predicting the responses. A five-level three-factor Taguchi orthogonal array (OA) design of experiment was employed as an initiative to optimize the prediction process. The electrostatic separation process was modelled using ANN by considering the recovered food waste and misclassified middling product during separation. A multi-layer feed-forward network developed in MATLAB was constructed. It was found that the results from the experiment and predicted model were in very good agreement. To our best knowledge, this is the first report for prediction of food waste separation performance employing ANN and Taguchi design.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.1921-1926,fig.,ref.

Twórcy

autor
  • Universiti Tunku Abdul Rahman, Perak, Malaysia
autor
  • Universiti Tunku Abdul Rahman, Perak, Malaysia
autor
  • Universiti Tunku Abdul Rahman, Perak, Malaysia
autor
  • Universiti Tunku Abdul Rahman, Perak, Malaysia

Bibliografia

  • 1. Badgie D., Samah M.A.A., Manaf L.A., Muda, A.B. Assessment of municipal solid waste composition in Malaysia: management, practice and challenges. Pol. J. Environ. Stud. 21(3), 539, 2012.
  • 2. Christensen T.H., Kjeldsen P., Bjerg P.L., Jensen D.L., Christensen J.B., Baun A., Albrechtsen H.J., Heron G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 16, 659, 2001.
  • 3. Khairuddin N., Manaf L.A., Hassan M.A., Halimoon N., AB KARIM W.A.W. Biogas harvesting from organic fraction of municipal solid waste as a renewable energy resource in Malaysia: a review. Pol. J. Environ. Stud. 24 (4), 1477, 2015.
  • 4. Lai K., Lim S., Teh P. Optimization of electrostatic separation process for maximizing biowaste recovery using Taguchi method and ANOVA. Pol. J. Environ. Stud. 24 (3), 1125, 2015.
  • 5. Masui N. Electrostatic separation for removal from green tea of stems and from food of impurities. Proc. IEJ. 6(3), 159, 1982.
  • 6. Mohanta S.K., Rout B., Dwari R.K., Reddy P.S.R., Mishra B.K. Tribo-electrostatic separation of high ash coking coal washery rejects: Effect of moisture on separation efficiency. Powder Technol. 294, 292, 2016.
  • 7. Mohabuth N., Miles N. The recovery of recyclable materials from waste electrical and electronic equipment (WEEE) by using vertical vibration separation. Resour. Conserv. Recy. 45, 60, 2005.
  • 8. Veit H.M., Diehl T.R., Salami A.P., Rodrigues J.S., Bernardes A.M., Tenório J.A.S. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Manage. 25 (1), 67, 2005.
  • 9. Tripathy S.K., Ramamurthy Y., Kumar C.R. Modeling of high-tension roll separator for separation of titanium bearing minerals. Powder Technol. 201 (2), 181, 2010.
  • 10. Medles K., Dascalescu L., Tilmatine A., Bendaoud A., Younes M. Experimental modeling of the electrostatic separation of granular materials. Particul. Sci. Technol. 25 (2), 163, 2007.
  • 11. Bilici M., Dascalescu L., Barna V., Gyorgy T., Rahou F., Samuila A. Experimental modeling of the tribo-aero-electrostatic separation of mixed granular plastics. IEEE Industry Applications Society Annual Meeting, 2011.
  • 12. Dascalescu L., Tilmatine A., Aman F., Mihailescu M. Optimization of electrostatic separation processes using response surface modeling. IEEE T. Ind. Appl. 40 (1), 53, 2004.
  • 13. Faris H., Alkasassbeh M., Rodan A. Artificial neural networks for surface ozone prediction: Models and analysis. Pol. J. Environ. Stud. 23 (2), 341, 2014.
  • 14. Samli R., Sivri N., Sevgen S., Kiremitci V.Z. Applying artificial neural networks for the estimation of chlorophyll-a concentrations along the Istanbul coast. Pol. J. Environ. Stud. 23 (4), 1281, 2014.
  • 15. Sinha K., Chowdhury S., Saha P.D., Datta, S. Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN). Ind. Crops Prod. 41, 165, 2013.
  • 16. LAI K.C., LIM S.K., TEH P.C., YEAP K.H. Characterization of novel food waste recovery process using an electrostatic separator. Pol. J. Environ. Stud. 25 (5), 2227, 2016.
  • 17. Chairez I., García-Peña I., Cabrera A. Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network. J. Process Control 19 (7), 1103, 2009.
  • 18. BASHEER IA., HAJMEER M. Artificial neural network: fundamentals, computing, design, and application. J. Microbiol. Meth. 43 (1), 3, 2000.
  • 19. Esfandian H., Samadi-Maybodi A., Parvini M., Khoshandam B. Development of a novel method for the removal of diazinon pesticide from aqueous solution and modeling by artificial neural networks (ANN). J. Ind. Eng. Chem. 35, 295, 2016.
  • 20. Zafari A., Kianmehr M.H., Abdolahzadeh R. Modeling the effect of extrusion parameters on density of biomass pellet using artificial neural network. Int. J. Recycl. Org. Waste Agric. 2 (1), 1, 2013.
  • 21. Demir S., Karadeniz A., Demir N.M. Using steepness coefficient to improve artificial neural network performance for environmental modeling. Pol. J. Environ. Stud. 25 (4), 1467, 2016.
  • 22. David, C., Arivazhagan, M., Ibrahim, M. Spent wash decolourization using nano - Al₂O₃/kaolin photocatalyst: Taguchi and ANN approach. J Saudi Chem. Soc. 19, 537, 2015.
  • 23. Podstawczyk D., Witek-Krowiak A., Dawiec A., Bhatnagar, A. Biosorption of copper (II) ions by flax meal: empirical modeling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation. Ecol. Eng. 83, 364, 2015.
  • 24. Soltanali S., Halladj R., Tayyebi S., Rashidi A. Neural network and genetic algorithm for modeling and optimization of effective parameters on synthesized ZSM-5 particle size. Mater. Lett. 136, 138, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9eeac30f-faa1-42dc-a5d7-8e01dcc84b2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.