Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 3 |
Tytuł artykułu

Evaluation of proline accumulation and 1-pyrroline-5-carboxylate synthetase (P5CS)gene expression during salinity stress in two Soybean (Glycine max L. Merr.) varieties

Warianty tytułu
Języki publikacji
The aim of our study was to compare the effects of salt stress in two soybean (Glycine max L. Merr.) varieties. Two soybean genotypes (Ataem-7 and Üstün-1) were grown under 0, 50, 100, and 150 mM NaCl treatments, and the leaves were harvested for lipid peroxidation analyses, proline content and P5CS gene expression levels. According to the results of lipid peroxidation analysis, Ataem-7 variety was found to be more sensitive than Üstün-1 variety for NaCl stress. Proline is an important osmolyte accumulated under environmental stresses. As a response to salinity, we determined their proline levels. Proline accumulation in Ataem-7 variety increased 1.39 fold in accordance with Üstün-1 variety at 150 mM NaCl treatment. Glycine max Δ¹-pyrroline-5-carboxylate synthetase (GmP5CS) gene expression levels under 50, 100 and 150 mM NaCl stress were determined. When the GmP5CS gene expression level was gradually increased in Üstiin-l variety, the highest gene expression level for Ataem-7 was determined at 100 mM NaCl. The GmP5CS gene expression in Üstiin-1 at 150 mM NaCl increased 2.93 fold compared with 100 mM treatment. When we evaluate the relation between proline accumulation and expression levels of GmP5CS gene, it is obvious that accumulations of proline in two soybean varieties are under control of different mechanisms in the presence of salinity.
Słowa kluczowe
Opis fizyczny
  • Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Kultur University, 34156 Atakoy, Istanbul, Turkey
  • 1. MARCHANDA G., GARG N. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant 30, 595, 2008.
  • 2. PHANG T.H., SHAO G., LAM H.M. Salt Tolerance in Soybean. J. Integ. Plant Biol. 50, (10), 1196, 2008.
  • 3. NETO A.D.A., PRISCO J.T., ENÉAS-FILHO J., ABREU C.E.B., GOMES-FILHO E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56, 87, 2006.
  • 4. YAZICI I., TÜRKAN L, SEKMEN A. H„ DEMIRAL T. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 61,49, 2007.
  • 5. BANU N.A., HOQUE A., WATANABE-SUGIMOTO M., MATSUOKA K., NAKAMURA Y., SHIMOISHI Y., MURATA Y. Proline and glycine betaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J. Plant Physiol. 166, (2), 146, 2009.
  • 6. APSE M.P., BLUMWALD E. Engineering salt tolerance in plants. Curr. Opin. Biotech. 13, 146, 2002.
  • 7. MARTINEZ C.A., MAESTRI M., LANI E.G. In vitro salt tolerance and proline accumulation in andean potato {Solanum spp.) differing in frost resistance. Plant Sei. 116, 117,1996.
  • 8. HMIDA-SAYARI A., GARGOURI-BOUZID R., BIDANI A., JAOUA L., SAVOURÉ A., JAOUA S. Overexpression of Δ¹-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci. 169, 746, 2005.
  • 9. KRISHNAN N„ DICKMAN M.B., BECKER D.F. Proline modulates the intracellular redox environment and protects mamalian cells against oxidative stress. Free Radical Bio. Med. 44, 671,2008.
  • 10. SZABADOS L, SAVOURÉ A. Proline: a multifunctional aminoacid. Trends Plant Sei. 15, (2), 89, 2010.
  • 11. JALEEL C.A., GOPI R„ SANKAR B., MANIVANNAN P., KISHOREKUMAR A., SRIDHARAN R., PANNEERSEL- VAM R. Studies on germination seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S. Afr. J. Bot. 73, 190, 2007.
  • 12. JALEEL C.A., MANIVANNAN P., LAKSHMANAN G.M.A., SRIDHARAN R., PANNEERSELVAM R. NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. C.R. Biologies 330, 806, 2007.
  • 13. HONG-BO S., LI-YE C., MING-AN S., JALEEL C.A., HONG-MEIM. Higher plant antioxidants and redox signaling under environmental stresses. C.R. Biologies 331, 433, 2008.
  • 14. LIU J., ZHU J.K. Proline accumulation and salt-stress- induced gene expression in a salt hypersensitive mutant of Arabidopsis. Plant Physiol. 114, 591,1997.
  • 15. SILVA-ORTEGA C.O., OCHOA-ALFARO A.E., REYES- AGÜERO J.A., AGUADO-SANTACRUZ G.A., JIMÉNEZ-BREMONT J.F. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol. Biochem 46, 82, 2008.
  • 16. BATES L.S., WALDERN R.P, TEARE I.D. Rapid determination of free proline for water stress studies. Plant Soil 39, 205, 1973.
  • 17. MA L., ZHOU E., GAO L., MAO X., ZHOU R., JIA J. Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). S. Afr. J. Bot. 74, 705, 2008.
  • 18. KIEFER E., HELLER W., ERNST D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol. Biol. Rep. 18, 33, 2000.
  • 19. PFAFFL M.W., GERSTMAYER B., BOSIO A., WINDISCH W. Effect of zinc deficiency on the mRNA expression pattern in liver and jejenum of adult rats: Monitoring gene expression using cDNA microarrays combined with real-time RT-PCR. J. Nutr. Biochem. 14, 691, 2003.
  • 20. KOCA H., BOR M., ÖZDEMIR F., TÜRKAN I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 60, 344, 2007.
  • 21. KUMAR S.G., REDDY A.M., SUDHAKAR C. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sei. 165, 1245, 2003.
  • 22. NAKAMURA I., MURAYAMA S., TOBITA S., BONG B.B., YANAGIHARA S., ISHIMINE Y., KAWAMITSU Y. Effect of NaCl on the photosynthesis, water relations and free proline accumulation in the wild Oryza species. Plant Prod. Sei. 5, (4), 305, 2002.
  • 23. MISRA N., GUPTA A.K. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sei. 169,331,2005.
  • 24. ASHRAF M., FOOLAD M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206, 2007.
  • 25. WANG H., HAN J. Changes in proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivare under salt stress. Agrie Sei China 8, (4), 431, 2009.
  • 26. GIANNAKOULA A., MOUSTAKAS M., MYLONA P., PAPADAKIS I., YUPSANIS T. Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation. J. Plant Physiol. 165, 385, 2008.
  • 27. CHA-UM S., KIRDMANEE C. Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso- osmotic salt and water-deficit stress. Agrie. Sei. China 8, (1), 51, 2009.
  • 28. JAMPEETANG A., BRIX H. Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia nutans. Aquat. Bot. 91, 181, 2009.
  • 29. LACERDA C.F., CAMBRAIA J., OLIVA M.A., RUIZ H.A., PRISCO J.T. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ. Exp. Bot. 49, 107, 2003.
  • 30. DEMIRAL T., TÜRKAN İ. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53, 247, 2005.
  • 31. LUTTS S., MAJERUS V., KINET J.M. NaCl effects on proline metabolism in rice (Oryza saliva) seedlings. Physiol. Plant 105, 450, 1999.
  • 32. HIEN D.T., JACOBS M., ANGENON G., HERMANS C., THU T.T., SON L.V., ROOSENS N.H. Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sei. 165, 1059, 2003.
  • 33. HONG Z., LAKKINENI K., ZHANG Z., VERMA D.P.S. Removal of feedback inhibition of Δ1-pyrroline-5-carboxy- late synthetase results in increased proline accumulation and protection of plants from from osmotic stress. Plant Physiol. 122, 1129, 2000.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.