PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 3 |

Tytuł artykułu

Remediation of soil contaminated with cadmium

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The search for the best solutions to restore soil balance is essential for attaining a stable and sustainable agricultural development worldwide. This research, which makes a contribution to these investigations, focuses on four substances (two innovative ones: basalt flour, brown algal extract, and two classic soil improvers: finely ground barley straw and compost) which can potentially alleviate the inhibitory effect of Cd2+ on the soil environment. The following were analyzed: the activity of acid phosphatase and alkaline phosphatase, counts of Pseudomonas sp., cellulolytic bacteria, copiotrophic bacteria and copiotrophic spore-forming bacteria, and the yield of spring barley. Cadmium (Cd2+) was applied as CdCl2 · 2.5H2O in the following doses: 0, 4, 40, 80, 120, 160, and 200 mg Cd2+ kg-1 of soil. For a more complete assessment of the soil, its biochemical properties and the counts of microorganisms were scrutinized with the following indices: RS – soil resistance, R:S – rhizosphere effect and EF – fertilization effect of the contamination alleviating substances. It was found that alkaline phosphatase is more sensitive to cadmium contamination of the soil than acid phosphatase. Cadmium did not exert any inhibitory effect on the number of microorganisms present or the yield of spring barley. Cellulolytic bacteria were the least sensitive to stress associated with the accumulation of high cadmium doses in the soil, whereas copiotrophic bacteria were the most sensitive microorganisms to the above stressor. The ability of cadmium-polluted soil to restore homeostasis depended on the type of a soil improver and the level of soil contamination. Negative consequences of cadmium pollution were effectively mitigated by straw, but less so by brown algal extract and basalt flour.

Wydawca

-

Rocznik

Tom

20

Numer

3

Opis fizyczny

p.769-784,fig.,ref.

Twórcy

  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Pl.Lodzki 3, 10-727 Olsztyn, Poland

Bibliografia

  • Agency for Toxic Substance and Disease Registry (ATSDR) 2005. U.S. Toxicological profile for cadmium. Department of Health and Humans Services, Public Health Service, Centers for Disease Control, Atlanta, Georgia, USA.
  • Alef K., Nannipieri P. 1998. Methods in applied soil microbiology and biochemistry. Eds. London. Academic Press Harcourt Brace & Company, p. 576.
  • Anda M., Shamshuddin J., Fauziah C.I., Omar S.R. 2009. Dissolution of ground basalt and its effect on oxisol chemical properties and cocoa growth. Soil Sci., 174: 264-271.
  • Anda M., Shamshuddin J., Fauziah C.I. 2013. Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions. Soil Till. Res., 132: 1-11.
  • Ciećko Z., Kalembasa S., Wyszkowski M., Rolka, E. 2005. The magnesium content in plants on soil contaminated with cadmium. Pol. J. Environ. Stud., 14(3): 365-370.
  • Chaudhuri D., Tripathy S., Veeresh H., Powell M. A., Hart B. R. 2003. Relationship of chemical fractions of heavy metals with microbial and enzyme activities in sludge and ashamended acid lateritic soil from India. Environ. Geol., 45: 115-123.
  • Chojnacka K., Chojnacki A., Górecka H. 2005. Biosorption of Cr(II) and Cu(II) ions by bluegreen algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59: 75-84.
  • Cordero B., Lodeiro P., Herr ero R., Sastr e de Vicente E. M. 2004. Biosorption of cadmium by Fucus spiralis. Environ. Chem., 1: 180-187.
  • Griffiths B.S., Phillipot L. 2013. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev., 37: 112-129.
  • Houlden A., Timms-Wilson T. M., Day M.J., Bailey M.J. 2008. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol. Ecol., 65: 193-201.
  • Irfan M., Hayat S., Ahmad H. A., Alyemeni M. N. 2013. Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi J. Biol. Sci., 20: 1-10.
  • Jezierska-Tys S., Rutkowska A. 2014. Chemical and enzymatic changes in soil treated with glufosinate ammonium. J. Elem., 19(1): 129-141. DOI: 10.5601/jelem.2014.19.1.357
  • Khan S., Qing C., Abd El-Latif H., Yue X., Ji-zheng H. 2007. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J. Environ. Sci., 19: 834-840.
  • Kilic N.K., Donmez G. 2008 Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. J. Hazard Mater., 154: 1019-1024.
  • Kucharski J., Wieczorek K., Wyszkowska J. 2011. Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J. Elem., 16(4): 577-589.
  • Liu S., Yang Z., Wang X., Zhang X., Gao R., Liu X. 2007. Effect of Cd and Pb pollution on soil enzymatic activities and soil microbiota. Front. Agric. China, 1(1): 85-89.
  • Maksymiec W., Wójcik M., Krupa Z. 2007. Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 66: 421-427.
  • Mohamed A. A., Castagna A., Ranieri A., Sanita di Topp i L. 2012. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant. Physiol. Bioch., 57: 15-22.
  • Munoz R., Alvarez M.T., Munoz A., Terr azas E., Guieysse B., Matt iasson B. 2006. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.Chemosphere, 63: 903-911.
  • Onta H., Hattori T. 1983. Oligotrophic bacteria on organic debris and plant roots in paddy field. Soil Biol. Biochem., 1: 1-8.
  • Orwin K.H., Wardle D.A. 2004. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem., 36: 1907-1912.
  • Romera E., Gonzalez F., Ballester A., Blazq uez M.L., Munoz J.A. 2006. Biosorption with algae: a statistical review. Crit. Rev. Biotechnol., 26: 223-35.
  • Shammshuddin J., Anda N., Fauziah CI ., Omar Syed S.R. 2011. Growth of cocoa planted on highly weathered soil as affected by application of basalt and/or compost. Commun. Soil Sci. Plant., 42(22): 2751-2766.
  • Smith S.R. 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int., 35: 142-156.
  • StatSoft Inc. 2012. Statistica (data analysis software system). version 10.0. Available at www. statsoft.com.
  • Vig K., Megharaj M., Sethunathan N., Naidu R. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res., 8: 121-135.
  • Wyszkowska J., Boros E., Kucharski J. 2007. Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil Environ., 53(12): 544-552.
  • Wyszkowska J., Borowik A., Kucharski J., Baćmaga M., Tomkiel M., Boros-Lajszner E. 2013a. The effect of organic fertilizers on the biochemical properties of soil contaminated with zinc. Plant Soil Environ., 59(11): 500-504.
  • Wyszkowska J., Borowik A., Kucharski M., Kucharski J. 2013b. Applicability of biochemical index to quality assessment of soil polluted with heavy metals. J. Elem., 18(4): 733-756. DOI: 10.5601/jelem.2013.18.4.504
  • Wyszkowska J., Borowik A., Kucharski M., Kucharski J. 2013c. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem., 18(4): 769-796. DOI: 10.5601/jelem.2013.18.4.455
  • Wyszkowska J., Kucharski J., Lajszner W. 2006. Nitrification process in nickel-contaminated soil. Pol. J. Environ. Stud., 15(6): 927-934.
  • Wyszkowska J., Kucharski M., Kucharski J. 2010. Activity of β-glucosidase, arylosulphatase and phosphatases in soil contaminated with copper. J. Elem., 15(1): 213-226.
  • Wyszkowska J., Kucharski M., Kucharski J., Borowik A. 2009. Activity of dehydrogenases, catalase and urease in copper polluted soil. J. Elem., 14(3): 605-617.
  • Wyszkowski M., Wyszkowska J. 2009. The effect of soil contamination with cadmium on the growth and chemical composition of spring barley (Hordeum vulgare L.) and its relationship with the enzymatic activity of soil. Fresen. Environ. Bull., 18(7): 1046-1053.
  • Yoshida N., Kieda R., Okuno T. 2006. Identification and characterization of heavy metal - resistant unicellular alga isolated from soil and its potential for phytoremediation. Biores. Technol.,97: 1843-1849.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9e3e026a-ffe0-40ee-9a13-40852f69ad50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.