PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 66 | 3 |

Tytuł artykułu

Genes controlling 2-deoxyglucose induced lysis and formation of reactive oxygen species in Schizosaccharomyces pombe

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Schizosaccharomyces pombe cells of strains each carrying a deletion of one of the genes snf5, ypa1, pho7 and pas1 and of a strain overexpressing gene odr1, have been previously shown to grow in presence of the toxic glucose analogue 2-deoxyglucose (2-DG). Here we report that these genes control 2-DG induced lysis and are, with the exception of odr1, also involved in control of formation of reactive oxygen species (ROS) upon exposure of cells to H₂O₂. Lysis of deletion strains, but not of strain overexpressing odr1, is dependent on glucose concentration of the medium whereas ROS formation is glucose independent.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

66

Numer

3

Opis fizyczny

p.393-396,fig.,ref.

Twórcy

  • Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
  • Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
  • Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India

Bibliografia

  • Apel K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399.
  • Biely P., Z. Krátký, J. Kovařík and Š. Bauer. 1971. Effect of 2-deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition. J. Bacteriol. 107: 121–129.
  • Brown J. 1962. Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism. 11: 1098–1112.
  • Coleman M.C., C.R. Asbury, D. Daniels, J. Du, N. Aykin-Burns, B.J. Smith, L. Li, D.R. Spitz and J.J. Cullen. 2008. 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic. Biol. Med. 44: 322–331.
  • Farkas V., A. Svoboda and S. Bauer. 1969. Inhibitory effect of 2-deoxy-d-glucose on the formation of the cell wall in yeast protoplasts. J. Bacteriol. 98: 744–748.
  • Goyal A. and V. Simanis. 2012. Characterization of ypa1 and ypa2, the Schizosaccharomyces pombe orthologs of the peptidyl proyl isomerases that activate PP2A, reveals a role for Ypa2p in the regulation of cytokinesis. Genetics 190: 1235–1250.
  • Gupta D.R., S.K. Paul, Y. Oowatari, Y. Matsuo and M. Kawamukai. 2011. Complex formation, phosphorylation, and localization of protein kinase A of Schizosaccharomyces pombe upon glucose starvation. Biosci. Biotechnol. Biochem. 75: 1456–1465.
  • Herrero E., J. Ros, G. Bellí and E. Cabiscol. 2008. Redox control and oxidative stress in yeast cells. Biochim. Biophys. Acta 1780: 1217–1235.
  • Hoffman C.S., V. Wood and P.A. Fantes. 2015. An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics 201: 403–423.
  • Ikner A. and K. Shiozaki. 2005. Yeast signaling pathways in the oxidative stress response. Mutat. Res. 569: 13–27.
  • Johnson B.F. 1968. Lysis of yeast cell walls induced by 2-deoxyglucose at their sites of glucan synthesis. J. Bacteriol. 95: 1169–1172.
  • Kato H., S. Kira and M. Kawamukai. 2013. The transcription factors Atf1 and Pcr1 are essential for transcriptional induction of the extracellular maltase Agl1 in fission yeast. PloS One 8: e80572.
  • Krátký Z., P. Biely and Š. Bauer. 1975. Mechanism of 2-deoxy-d-glucose inhibition of cell-wall polysaccharide and glycoprotein biosyntheses in Saccharomyces cerevisiae. Eur. J. Biochem. 54: 459–467.
  • Madrid M., T. Soto, A. Franco, V. Paredes, J. Vicente, E. Hidalgo, M. Gacto and J. Cansado. 2004. A cooperative role for Atf1 and Pap1 in the detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. J. Biol. Chem. 279: 41594–41602.
  • Madrid M., T. Soto, H. K. Khong, A. Franco, J. Vicente, P. Pérez, M. Gacto and J. Cansado. 2006. Stress-induced response, localization, and regulation of the Pmk1 cell integrity pathway in Schizosaccharomyces pombe. J. Biol. Chem. 281: 2033–2043.
  • Madrid M., J. Fernández-Zapata, L. Sánchez-Mir, T. Soto, A. Franco, J. Vicente-Soler, M. Gacto and J. Cansado. 2013. Role of the fission yeast cell integrity MAPK pathway in response to glucose limitation. BMC Microbiol. 13: 34.
  • McCartney R.R., D.G. Chandrashekarappa, B.B. Zhang and M.C. Schmidt. 2014. Genetic analysis of resistance and sensiti-vity to 2-deoxyglucose in Saccharomyces cerevisiae. Genetics 198: 635–646.
  • Megnet R. 1965. Effect of 2-deoxyglucose on Schizosaccharomyces pombe. J. Bacteriol. 90: 1032–1035.
  • Monahan B. J., J. Villén, S. Marguerat, J. Bähler, S. P. Gygi and F. Winston. 2008. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat. Struct. Mol. Biol. 15: 873–880.
  • O’Donnell A.F., R.R. McCartney, D.G. Chandrashekarappa, B.B. Zhang, J. Thorner and M.C. Schmidt. 2015. 2-deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3. Mol. Cell. Biol. 35: 939–955.
  • Palabiyik B., C. Kig, M. Pekmez, L. Dalyan, N. Arda and G. Temizkan. 2012. Investigation of the relationship between oxidative stress and glucose signaling in Schizosaccharomyces pombe. Biochem. Genet. 50: 336–349.
  • Palabiyik B., F. Jafari Ghods and E. Onay Ucar. 2013. Effects of glucose sensing/signaling on oxidative stress response in glucose repression mutants of Schizosaccharomyces pombe. Genet. Mol. Res. GMR 12: 5046–5056.
  • Pelicano H., D. S. Martin, R.-H. Xu and P. Huang. 2006. Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633–4646.
  • Randez-Gil F., A. Blasco, J. A. Prieto and P. Sanz. 1995. DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast Chichester Engl. 11: 1233–1240.
  • Ray P.D., B.-W. Huang and Y. Tsuji. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24: 981–990.
  • Roux A.E., A. Leroux, M.A. Alaamery, C.S. Hoffman, P. Chartrand, G. Ferbeyre and L.A. Rokeach. 2009. Pro-aging effects of glucose signaling through a g protein-coupled glucose receptor in fission yeast. PLoS Genet. 5: e1000408.
  • van Slegtenhorst M., A. Mustafa and E.P. Henske. 2005. Pas1, a G1 cyclin, regulates amino acid uptake and rescues a delay in G1 arrest in Tsc1 and Tsc2 mutants in Schizosaccharomyces pombe. Hum. Mol. Genet. 14: 2851–2858.
  • Suslu K. G., B. Palabiyik and G. Temizkan. 2011. Genes invol-ved in glucose repression and oxidative stress response in the fission yeast Schizosaccharomyces pombe. Genet. Mol. Res. GMR 10: 4041–4047.
  • de la Torre-Ruiz M.A., N. Pujol and V. Sundaran. 2015. Coping with oxidative stress. The yeast model. Curr. Drug Targets 16: 2–12.
  • Vishwanatha A., C. Rallis, S.B. Subramanyaswamy, C.J. Michael D’Souza, J. Bähler and M.E. Schweingruber. 2016. Identification of nuclear genes affecting 2-Deoxyglucose resistance in Schizosaccharomyces pombe. FEMS Yeast Res. 16(6): fow061.
  • Wu D. and P. Yotnda. 2011. Production and detection of reactive oxygen species (ROS) in cancers. J. Vis. Exp. JoVE. 57.pii: 3357.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9e142b9c-5d93-4a80-9433-6651f58e427c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.