EN
Management of air pollution in Tehran, Iran, has been a significant challenge for urban authorities in recent years owing to the number and complexity of the factors affecting the formation and spread of the pollutions. The present study used an integrated modeling approach involving Spatio, Temporal, Uncertainty Decision Support Systems (STUDSS) using Multi Criteria Decision Analysis (MCDA) and an Artificial Neural Network (ANN) for the virtual simulation and strategy assessment of air pollution. Since sources of air pollution and associated pollution control strategies are dependent on location, time and uncertain variables, Multi-Dimensional Decision Support System (MDDSS) can be efficient tool for urban air quality decision-making process. In order to model and evaluate air pollution, time-series data over a period of four years, screened and classified management strategies as well as other structural and environmental data such as land uses, terrain topography, heights of buildings, climatic conditions, population density and pollution sources were modeled using advanced software packages of MCDA and ANN. They were ultimately simulated and evaluated using the MDDSS. The results obtained from the implementation of the STUDSS showed that this tool could be used to provide sustainable solutions to air quality in metropolises and could respond to social satisfaction and economic development.