Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 1 |
Tytuł artykułu

Influence of soil quality for yielding and biometric Features of Miscanthus x giganteus

Warianty tytułu
Języki publikacji
In recent years renewable energy sources (RES) have played a key role in current strategies to mitigate the impacts of global warming and independence on foreign energy sources. Miscanthus (Miscanthus x giganteus) is one of perennial grass which was identified as among best choices for low input bioenergy production. Our paper presents the relationship between the quality of soil and yielding as well as the biometrics features of miscanthus (Miscanthus x giganteus). Following this study Miscanthus x giganteus has best yields on soils of average quality, not too heavy. Obtained results can also conclude that achieving Miscanthus x giganteus yield at 2-4 kg DM (m2) -1 is possible in the case of plants which grow from 30 to 60 shoots for stump with a diameter of 7-9 mm and a height exceeding 2.5 m.
Słowa kluczowe
Opis fizyczny
  • Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation, State Research Institute in Pulawy, Czartoryskich 8 St, 24-100 Pulawy, Poland
  • Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation, State Research Institute in Pulawy, Czartoryskich 8 St, 24-100 Pulawy, Poland
  • 1. CORNELISSEN S., KOPER M., DENG Y.Y. The role of bioenergy in a fully sustainable global energy system. Biomass Bioenerg. 41, 21, 2012.
  • 2. KHANNA M., DHUNGANA B., CLIFTON-BROWN J. Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenerg. 32, 482, 2008.
  • 3. MC LAUGHLIN S.B., WALSH M.E. Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenerg. 14, 317, 1999.
  • 4. EEA How much bioenergy can Europe produce without harming the environment? EEA Report No 7, Copenhagen, 2006.
  • 5. ERICSSON K., ROSENQVIST H., NILSSON J.L. Energy crop production costs in the EU. Biomass Bioenerg. 33, 1577, 2009.
  • 6. FROMBO F., MINCIARDI R., ROBBA M., ROSSO F., SACILE R. Planning woody biomass logistics for energy production: A strategic decision model. Biomass Bioenerg. 33, 372, 2009.
  • 7. STYLES D., THORNE F., JONES B.M. Energy crops in Ireland: An economic comparison of willow and Miscanthus production with conventional farming systems. Biomass Bioenergy 32, 407, 2008.
  • 8.HOOGWIJK M., FAAIJA., DE VRIES B., TURKENBURG W. Exploration of regional and global cost-supply curves of biomass energy from short-rotation crops and abandoned cropland and rest land under four IPCC SRES land-use scenarios. Biomass Bioenerg. 33, 26, 2009.
  • 9. OECD/IEA. Bioenergy Project Development & Biomass Supply. OECD/IEA, Paris, 2007.
  • 10. TURKENBURG W.C. Renewable energy technologies. In: Goldemberg J (ed) World energy assessment. DC:UNDP, Washington 220-272, 2000.
  • 11. CHRISTIAN D.G., YATES N.E., RICHE A.B. Establishing Miscanthus sinensis from seed using conventional sowing methods. Ind. Crop Prod. 21, 109, 2005.
  • 12. GREEF J.M., DEUTER M. Syntaxonomy of Miscanthus x giganteus GREEF et DEU. Angew. Botan. 67, 87, 1993.
  • 13. KAHLE P., BEUCH S., BOELCKE B., LEINWEBER P., SCHULTEN H.R. Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. Eur. J. Agron. 15, 171, 2001.
  • 14. LEWANDOWSKI I., CLIFTON-BROWN J.C., SCURLOCK J.M.O., HUISMAN W. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 19, 209, 2000.
  • 15. CLIFTON-BROWN J.C., LEWANDOWSKI I. Water use efficiency and biomass partitioning of three different miscanthus genotypes with limited and unlimited water supply. Ann. Bot. 86, 191, 2000.
  • 16. NOLAN A., MC DONNELL K., MC CURTAIN M., CARROLL J.P., FINNAN J., RICE B. Conservation of miscanthus in bale form. Biosyst. Eng. 104, 345, 2009.
  • 17. KARLEN D.L., DITZLER C.A., ANDREWS S.S. Soil quality: why and how? Geoderma 114, 145, 2003.
  • 18. MATHE-GASPAR G., FODOR N., POKOVAI K., KOVACS G.J. Crop modeling as a tool to separate the influence of the soil and weather on crop yields. Phys. Chem. Earth 30, 165, 2005.
  • 19. KUŚ J., NAWROCKI S. Productivity of different soils in microplots experiments. Pam. Puław. 79, 7, 1983 [In Polish].
  • 20. CHOŁUJ D,. PODLASKI S., PIETKIEWICZ S., WIŚNIEWSKI G. Physiological parameters determining the yield of energy crops. In Bocian P, Golec T, Rakowski J, Editors Modern technology obtaining and energy use of biomass. Institute of Power Engineering, Warsaw, 69-88, 2010 [In Polish].
  • 21. KOTECKI A. Cultivation of Miscanthus Giganteus. Energy and non-energy possibilities of straw using. UP, Wrocław, 2010 [In Polish].
  • 22. FISCHER G., PRIELER S., VAN VELTHUIZEN H. Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia. Biomass Bioenerg. 28, 119, 2005.
  • 23. ARAVINDHAKSHAN S.C., EPPLIN F.M., TALIAFERRO CH.M. Economics of switchgrass and miscanthus relative to coal as feedstock generating electricity. Biomass Bioenergy. 34, 1375, 2010.
  • 24. ZUB H.W., BRANCOURT-HULMEL M. Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron. Sustain. Develop. 30, 201, 2009.
  • 25. BORZĘCKA-WALKER M. Productivity of miscanthus (Miscatntus spp.) in different conditions and weather habitat. PhD thesis. IUNG-PIB, Puławy 2008 [In Polish].
  • 26. JEŻOWSKI S. Yield traits ox six clones of Miscanthus in the first 3 years following planting in Poland. Ind. Crop Prod. 27, 65, 2008.
  • 27. ANGELINI L.G., CECCARINI L., NASSI O DI NASSO N., BONARI E. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristic and energy balance. Biomass Bioenerg. 33, 635, 2009.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.