PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

How submerged macrophyte restoration promotes a shift of phytoplankton community in a shallow subtropical lake

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Submerged macrophyte restoration has been widely used to decrease phytoplankton and combat eutrophication in many temperate shallow lakes. However, very limited studies have been done to explore its potential in decreasing phytoplankton in subtropical shallow lakes. We hypothesize that macrophyte restoration can also decrease phytoplankton and shift community structures in subtropical shallow lakes. In order to test our hypothesis, we consistently investigated submerged macrophytes, nutrients, and phytoplankton for three years in a shallow subtropical lake. Multiple analytical methods were employed to assess the effect of macrophyte restoration on the phytoplankton community. The results showed that the density and biomass of total phytoplankton after restoration were less compared to those before the restoration. During the restoration, species diversity significantly increased every year, but the change in species richness was not significant. Moreover, phytoplankton community structure also transformed greatly. Especially cyanobacteria density gradually decreased until almost disappeared; Chlorophyta density also significantly decreased from 4.6 × 10⁶ cell/L to 1.9 × 10⁶ cell/L. Although changes in the densities of other groups were not significant, their ratios in total phytoplankton significantly increased. The changes in four dominant species were also significant during the restoration, with Microcystis aeruginosa, M. incerta, and Chlamydomonas sp. significantly decreasing, but Chlorella pyrenoidosa significantly increasing. Correlation analysis between phytoplankton and environmental factors (macrophyte and water quality) showed that macrophytes were negatively correlated with total phytoplankton, TN, and COD, but total phytoplankton was positively correlated with TN and COD. These relations indicated that macrophyte restoration might not only directly inhibit phytoplankton growth, but also indirectly decrease phytoplankton by both bottom-up and top-down controls of phytoplankton. Therefore, these results basically proved our hypothesis, and more attention should be focused on this method in future lake management.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1363-1373,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, University of the Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, University of the Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, University of the Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, University of the Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, University of the Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, University of the Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, University of the Chinese Academy of Sciences, Wuhan 430072, China

Bibliografia

  • 1. ANSARI ABID A., GILL S.S., KHAN F.A. Eutrophication: Threat to Aquatic Ecosystems. Eutrophication: causes, consequences and control. 143, 2010.
  • 2. WATSON S.B., MILLER C., ARHONDITSIS G., BOYER G.L., CARMICHAEL W., CHARLTON M.N., CONFESOR R., DEPEW D.C., HÖÖK T.O., LUDSIN S.A., MATISOFF G., MCELMURRY S.P., MURRAY M.W., PETER RICHARDS R., RAO Y.R., STEFFEN M.M., WILHELM. S.W. The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. Harmful Algae. 56, 44, 2016.
  • 3. PAERL H.W., HALL N.S., CALANDRINO E.S. Controlling harmful cyanobacteria bloomss in a world experiencing anthropogenic and climatic-induced change. Sci. Total. Environ. 409, 1739, 2011.
  • 4. WATERS M.N., SCHELSKE C.L., BRENNER M. Cyanobacteria dynamics in shallow Lake Apopka (Florida, U.S.A.) before and after the shift from a macrophyte-dominated to a phytoplankton-dominated state. Freshwater Biol. 60, 1571, 2015.
  • 5. ĐORÐEVIĆ N.B., SIMIĆ S.B. Cyanobacterial blooms in oligosaline and alkaline microaccumulation before and after rehabilitation. Pol. J. Environ. Stud. 23 (6), 1975, 2014.
  • 6. CHEN J., XIE P., LI L., XU J. First identification of the hepatotoxic microcystins in the serum of achronically exposed human population together with indication of hepatocellular damage. Toxicol. Sci. 108, 81, 2009.
  • 7. XIE P. Historical Development of Cyanobacteria with Blooms Fisaster in Lake Taihu. Science Press, Beijing. 2008.
  • 8. KOZAK A., GOLDYN R. Variation in Phyto- and Zooplankton of Restored Lake Uzarzewskie. Pol. J. Environ. Stud. 23 (4), 1201, 2014.
  • 9. ARAÚJO F, BECKER V, ATTAYDE J.L. Shallow lake restoration and water quality management by the combined effects of polyaluminium chloride addition and benthivorous fish removal: a field mesocosm experiment. Hydrobiologia. 1, 2015.
  • 10. YU J., LIU Z., HE H., ZHEN W., GUAN B.H., CHEN F.Z., LI K.Y., ZHONG P., DE MELLO F.T., JEPPSEN E. Submerged macrophytes facilitate dominance of omnivorous fish in a subtropical shallow lake: implications for lake restoration. Hydrobiologia. 1, 2016.
  • 11. COOKE G.D., WELCH E.B., PETERSON S.A., NICHOLAS S.A. Restoration andManagement of Lakes and Reservoirs. CRC Press, Boca Raton, Florida, 2005.
  • 12. JEPPESEN E., MEHNER T., WINFIELD I.J., KANGUR K., SARVALA J., GERDEAUX D., RASK M., MALMQUIST H.J., HOLMGREN K., VOLTA P., ROMO S., ECKMANN R., SANDSTRÖM A., BLANCO S., KANGUR A., STABO H.R., TARVAINEN M., VENTELÄ A.M., SØNDERGAARD M., LAURIDSEN T.L., MEERHOFF M. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia. 694, 1, 2012.
  • 13. SAYER C.D., DAVIDSON T.A., RAWCLIFFR R., LANGDON P.G., LEAVITT P.R., COCKERTON G., ROSE N.L., GROFT T. Consequences of fish kills for long-term trophic structure in shallow lakes: implications for theory and restoration. Ecosystems. 1, 2016.
  • 14. LAZZARO X., STARLING F. Using biomanipulation to control eutrophication in a shallow tropical urban reservoir (Lago Paranoá, Brazil). In: Reddy, M.V. (Ed.), Restoration and Management of Tropical Eutrophic Lakes. Oxford & IBH Publ. Co. Pvt. Ltd., New Delhi and Science Publishers Inc., New Hampshire, 361, 2005.
  • 15. SKOV C., NILSSON P.A. Evaluating stocking of YOY pike Esox lucius as a tool in the restoration of shallow lakes. Freshwater Biol. 52, 1834, 2007.
  • 16. GULATI R.D., PIRES L.M.D., VAN DONK E. Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnologica. 38, 233, 2008.
  • 17. ONSEM S.V., BACKER S.D., TRIEST L. Microhabitatzooplankton relationship in extensive macrophyte vegetations of eutrophic clear-water ponds. Hydrobiologia. 656 (1), 67, 2010.
  • 18. VANDERSTUKKEN M., DECLERCK S.A.J., DECAESTECKER E., MUYLAERT K. Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii. Freshwater Biol. 59 (5), 930, 2014.
  • 19. PAICE R.L., CHAMBERS J.M., ROBSON B.J. Outcomes of submerged macrophyte restoration in a shallow impounded, eutrophic river. Hydrobiologia. 1, 2015.
  • 20. MUYLAERT K., DECLERCK S., VAN WICHELEN J., DE MEESTER L., VYVERMAN W. An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica. 36, 69, 2006.
  • 21. VANDERSTUKKEN M., MAZZEO N., COLEN W.V., DECLERCK S.A.J., MUYLAERT K. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study. Freshwater Biol. 56, 1837, 2011.
  • 22. JEPPESEN E., MEERHOFF M., JACOBSEN B.A., HANSEN R.S., SØNDERGAARD M., JENSEN J.P., LAURIDSEN T.L., MAZZEO N., BRANCO C.W.C. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia. 581, 269, 2007.
  • 23. LOVERDE-OLIVEIRA S.M., HUSZAR V.L.M., MAZZEO N., SCHEFFER M. Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems. 12, 807, 2009.
  • 24. BACHMANN R.W., HORSBURGH C.A., HOYER M.V., MATARAZA L.K., CANFIELD D.E. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia. 470, 219, 2002.
  • 25. FERNANDEZ-ALAEZ M., FERNANDEZ-ALAEZ C., BECARES E., VALENTIN M., GOMA J., CASTRILLO P. A 2-year experimental study on nutrient and predator influences on food web constituents in a shallow lake of north-west Spain. Freshwater Biol. 49, 1574, 2004.
  • 26. KOSTEN S., LACEROT G., JEPPESEN E, MARQUES D.D., VAN NES E.H., MAZZEO N., SCHEFFER M. Effects of submerged vegetation on water clarity across climates. Ecosystems. 12, 1117, 2009.
  • 27. MUYLAERT K., PEREZ-MARTINEZ C., SANCHEZ-CASTILLO P., LAURIDSEN T.L., VANDERSTUKKEN M., DECLERCK S.A.J., VAN DER GUCHT K., CONDE-PORCUNA J.M., JEPPESEN E., MEESTER L.D., VYVERMAN W. Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe. Hydrobiologia. 653, 79, 2010.
  • 28. ZHOU Q.X., GIBSON C.E., ZHU Y. 2001. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere. 42 (2), 221, 2001.
  • 29. STATE EPA of CHINA (Ed.). Monitoring and Determination Methods for Water and Wastewater, 4th ed. China Environmental Science Press, Beijing, 836, 2002.
  • 30. HU H.J., WEI Y.X. THE FRESHWATER ALGAE OF CHINA: Systematics, Taxonomy and Ecology. Science Press, Beijing. 2006.
  • 31. CIURLI A., ZUCCARINI P., ALPI A. Growth and nutrient absorption of two submerged aquatic macrophytes in mesocosms, for reinsertion in a eutrophicated shallow lake, Wetl. Ecol. Manag. 17, 107, 2009.
  • 32. JIANG H., ZHAO D., ZHAO H., CAI Y., XU D.L., ZHOU C.F., LENG X., XIE D. Density-Dependent Interactions Between Hydrilla verticillata, (L.F.) Royle and Phytoplankton: A Mesocosm Experiment. Clean Soil Air Water 43, 1623, 2015.
  • 33. LI E.H., LI W., LIU G.H., YUAN L.Y. The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake. Aquat. Bot. 8 (2), 121, 2008.
  • 34. ZHU M., ZHU G., NURMINEN L., WU T., DENG J., ZHANG Y., QIN B., VENTELÄ A. The influence of macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large lake (lake taihu, china). Plos One. 10 (6), 2015.
  • 35. ŠPOLJAR M., DRAŽINA T., HABDIJA I., MESELJEVIĆ M., GRČIĆ Z. Contrasting zooplankton assemblages in two oxbow lakes with low transparencies and narrow emergent macrophyte belts (Krapina River, Croatia). Int. Rev. Hydrobiol. 96, 175-190, 2011.
  • 36. ŠPOLJAR M., TOMLJANVIĆ T., DRAŽINA T., LAJTNER J., ŠTULEC H., MATULIĆ D. Zooplankton structure in two interconnected ponds: similarities and differences. Journal of Fisheries. 74, 6, 2016.
  • 37. JEPPESEN E., JENSEN J.P., SØNDERGAARD M., LAURIDSEN T., PEDERSEN L.J., JENSEN L. Topdown control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia. 342-343, 151-164, 1997.
  • 38. CAZZANELLI M., WARMING T.P., CHRISTOFFERSEN K.S. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia. 605, 113, 2008.
  • 39. BURKS R.L., LODGE D.L., JEPPESEN E., LAURIDSEN T.L. Diel horizontal migration of zooplankton: cost and benefits of inhabiting the littoral. Freshwater Biol. 47, 343, 2002.
  • 40. BLINDOW I., HARGEBY A., HILT S. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia. 737, 99, 2014.
  • 41. WANG H.Q., CHENG S.P., ZHANG S.H., HE F., LIANG W., ZHANG L.P., HU C.Y., GE F.J., WU Z.B. Chemical composition in aqueous extracts of Potamogeton malaianus and Potamogeton maackianus and their allelopathic effects on microcystis aeruginosa. Pol. J. Environ. Stud. 19 (1), 213, 2010.
  • 42. MJELDE M., FAAFENG B.A. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshwater Biol. 37, 355, 1997.
  • 43. MULDERIJ G., SMOLDERS A.J.P., VAN DONK E. The allelopathic effect of Stratiotes aloides on phytoplankton under natural conditions. Freshwater Biol. 51, 554, 2006.
  • 44. JIN X., JING J., SHENG L., JIN M. Interspecies competition between Microcystis aeruginosa and Scenedesmus obliquus under phenanthrene stress. Pol. J. Environ. Stud. 23 (5), 1609, 2014.
  • 45. SUIKKANEN S., FISTAROL G.O., GRANÉLI E. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae, and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308 (1), 85, 2013.
  • 46. NAHA S., BISWAS N., GODHANTARAMAN R.K., SARANGI B.D., BHATTACHARYA S.K., SARKAR, SATPATHY K.K. Blooms of Hemidiscus hardmannianus (Bacillariophyceae) and Its Impact on Water Quality and Plankton Community Structure in a Mangrove Wetland. Clean Soil Air Water. 41, 333, 2013.
  • 47. ŠVANYS A., PAŠKAUSKAS R., HILT S. Effects of the allelopathically active macrophyte Myriophyllum spicatum on a natural phytoplankton community: a mesocosm study. Hydrobiologia. 737, 57, 2014.
  • 48. WANG H., LIANG F., ZHANG L. Composition and Anti-Cyanobacterial Activity of Essential Oils from Six Different Submerged Macrophytes. Pol. J. Environ. Stud. 24 (1), 333, 2015.
  • 49. HILT S., GROSS E.M. Can allelopathically active submerged macrophytes stabilize clear-water states in shallow lakes? Basic Appl. Ecol. 9, 422, 2008.
  • 50. PEŁECHATA A., PEŁECHATY M. The in situ influence of Ceratophyllum demersum on a phytoplankton assemblage. Oceanol. Hydrobiol. St. 39 (1), 95, 2010.
  • 51. FIGUEIRDO DE D.R., AZEITEIRO U.M., ESTEVES S.M., GONC ALVES F.J.M., PEREIRA M.J. Microcystin-producing bloomss-a serious global public health issue. Ecotox. Environ. Safe. 59, 151, 2004.
  • 52. DONG J., YANG K., LI S., LI G., SONG L. Submerged vegetation removal promotes shift of dominant phytoplankton functional groups in a eutrophic lake. J. Environ. Sci. 26, 1699, 2014.
  • 53. GRANELI E., WEBERG M., SALOMON P.S. Harmful algal bloomss of allelopathic microalgal species: the role of eutrophication. Harmful Algae. 8, 94, 2008.
  • 54. CHANG X., EIGEMANN F., HILT S. Do macrophytes support harmful cyanobacteria? Interactions with a green alga reverse the inhibiting effects of macrophyte allelochemicals on Microcystis aeruginosa. Harmful Algae. 19, 76, 2012.
  • 55. ZHANG M., KONG F., XING P., TAN X. Effects of interspecific interactions between Microcystis aeruginosa, and Chlorella pyrenoidosa, on their growth and physiology. Internat. Rev. Hydrobiol. 92 (3), 281, 2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9dcaf53e-0f62-4964-8158-06bc3821abad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.