PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 1 |

Tytuł artykułu

Nigrostriatal interaction in the aging brain: new therapeutic target for Parkinson’s disease

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Parkinson’s disease (PD) is a progressive neurodegenerative disorder of unclear etiology and pathogenesis. Research results gathered to date support the hypothesis that the motor symptoms of the disease result from the gradual loss of midbrain dopamine neurons residing in the substantia nigra pars compacta (SNpc). Recent discoveries, however, significantly expand this knowledge indicating that the primary source of the PD pathogenesis may be located both in the SNpc as well as in the GABAergic striatum. Newly discovered striatal neurogenesis – normally a lifelong process – determines the efficiency of nigrostriatal interaction. Deficient neurogenesis within the striatum followed by a decline in the GABAergic/dopaminergic interaction results in progressive disconnection of the dopaminergic input, which initiates a ‘vicious circle’ cascade of neuronal damage. Effects of both deficient striatal neurogenesis and age‑related neurodegeneration within the striatum accumulate, resulting in a progressive decline in the control functions of the basal ganglia, loss of dopaminergic neurons, and occurrence of PD clinical symptoms. Functional and pharmacological control of these dynamic relationships may result in treatments that are more effective with fewer side‑effects

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

1

Opis fizyczny

p.106-112,fig.,ref.

Twórcy

  • Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
  • Jerzy Kukuczka Academy of Physical Education, Katowice, Poland

Bibliografia

  • Adlaf EW, Mitchell‑Dick A, Kuo CT (2016) Discerning neurogenic vs. non‑neurogenic postnatal lateral ventricular astrocytes via activity‑dependent input. Front Neurosci 10: 111. doi: 10.3389/ fnins.2016.00111.
  • Androutsellis‑Theotokis A, Rueger MA, Park DM, Mkhikian H, Korb E, Poser SW, Walbridge S, Munasinghe J, Koretsky AP, Lonser RR, McKay RD (2009) Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proc Natl Acad Sci U S A 106: 13570–13575.
  • Bédard A, Cossette M, Lévesque M, Parent A (2002) Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci Lett 328: 213–216.
  • Błaszczyk JW (1998) Motor deficiency in Parkinson’s disease. Acta Neurobiol Exp (Wars) 58: 79–93.
  • Błaszczyk JW (2016) Parkinson’s disease and neurodegeneration: GABA‑collapse hypothesis. Front Neurosci 10: 269. doi: 10.3389/ fnins.2016.00269.
  • Borel V, Götz M (2014) Role of radial glial cells in cerebral cortex folding. Curr Opin Neurobiol 27: 39–46. doi: 10.1016/j.conb.2014.02.007.
  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson‘s disease‑related pathology. Cell Tissue Res 318: 121–134.
  • Brazel CY, Romanko MJ, Rothstein RP, Levison SW (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69: 49–69. doi: 10.1016/S0301‑0082(03)00002‑9.
  • Brichta  L, Greengard P (2014) Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat 8: 152. doi: 10.3389/fnana.2014.00152.
  • Cenci MA (2007) Dopamine dysregulation of movement control in L‑DOPA‑induced dyskinesia. Trends Neurosci 30: 236–243. doi: 10.1016/j.tins.2007.03.005.
  • Chaudhuri KR, Healy DG, Schapira AHV (2006) Non‑motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5: 235–245.
  • Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 34: 80–101.
  • Cohen AD, Tillerson JL, Smith AD, Schallert T, Zigmond MJ (2003) Neuroprotective effects of prior limb use in 6‑hydroxydopamine‑treated rats: possible role of GDNF. J Neurochem 85: 299–305.
  • Curtis MA, Kam M, Faull RL (2011) Neurogenesis in humans. Eur J Neurosci 33: 1170–1174. doi: 10.1111/j.1460‑9568.2011.07616.x.
  • Damodaran S, Evans RC, Blackwell KT (2014) Synchronized firing of fast‑spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol 11: 836–848. doi: 10.1152/jn.00382.2013.
  • Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168: 415–427.
  • Dopeso‑Reyes IG, Rico AJ, Roda E, Sierra S, Pignataro D, Lanz M, Sucunza D, Chang‑Azancot L, Lanciego JL (2014) Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 8: 146. doi: 10.3389/fnana.2014.00146.
  • Ernst A, Alkass K, Bernard S, Salehpour  M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014) Neurogenesis in the striatum of the adult human brain. Cell 156: 1072–1083.
  • Eserian JK (2013) Vitamin D as an effective treatment approach for drug abuse and addiction. J Med Hypotheses Ideas 7: 35–39. doi:10.1016/j. jmhi.2014.02.002.
  • Fahn S (2008) The history of dopamine and levodopa in the treatment of Parkinson’s disease. Movement Disord 23(Suppl 3): S497–S508.
  • Goedert M (2015) Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Ab, tau, and a‑synuclein. Science 349: 1255555. doi: 10.1126/science.1255555.
  • Göritz C, Frisén J (2012) Neural stem cells and neurogenesis in the adult. Cell Stem Cell 10: 657–659.
  • Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs–roles for the striatum and pallidum. Trends Neurosci 28: 364–370.
  • Grosch J, Winkler J, Kohl Z (2016) Early degeneration of both dopaminergic and serotonergic axons – a common mechanism in Parkinson’s Disease. Front Cell Neurosci 10: 293. doi: 10.3389/fncel.2016.00293.
  • Hu H, Gan J, Jonas P (2014) Fast‑spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345(6196): 1255263. doi: 10.1126/science.1255263.
  • Ibáñez CF, Andressoo JO (2017) Biology of GDNF and its receptors – Relevance for disorders of the central nervous system. Neurobiol Dis 97: 80–89. doi: 10.1016/j.nbd.2016.01.021. Kirik D,
  • Georgievska B, Björklund A (2004) Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7(2): 105–110.
  • Koós T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2: 467–472. doi: 10.1038/8138.
  • Koós T, Tepper JM (2002) Dual cholinergic control of fast‑spiking interneurons in the neostriatum. J Neurosci 22: 529–535.
  • Lapchak PA, Gash DM, Collins F, Hilt D, Miller PJ, Araujo DM (1997) Pharmacological activities of glial cell line‑derived neurotrophic factor (GDNF): preclinical development and application to the treatment of Parkinson’s disease. Exp Neurol 145: 309–321. doi: 10.1006/exnr.1997.6501.
  • Lapchak PA, Miller PJ, Jiao S, Araujo DM, Hilt D, Collins F (1996) Biology of glial cell line‑derived neurotrophic factor (GDNF): implications for the use of GDNF to treat Parkinson’s disease. Neurodegeneration 5: 197–205.
  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line‑derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132.
  • LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS, Tatter SB, Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, Van Meter L, Sapan CV, During MJ, Kaplitt MG, Feigin A (2011) AAV2‑GAD gene therapy for advanced Parkinson’s disease: a double‑blind, sham‑surgery controlled, randomised trial. Lancet Neurol 10: 309–319.
  • Marsh SE, and Blurton‑Jones  M (2017) Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 2017. doi: 10.1016/j.neuint.2017.02.006. Morale
  • MC, Serra PA, L’Episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, Rocchitta G, Desole MS, Miele E, Marchetti B (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138: 869–878.
  • Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D (2009) Interplay between cytosolic dopamine, calcium, and alphasynuclein causes selective death of substantia nigra neurons. Neuron 62: 218–229.
  • Paratcha G, Ibáñez CF, Ledda F (2006) GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci 31(3): 505–514. doi: 10.1016/j.mcn.2005.11.007.
  • Pellicano C, Benincasa D, Pisani V, Buttarelli FR, Giovannelli M, Pontieri FE (2007) Prodromal non‑motor symptoms of Parkinson’s disease. Neuropsychiat Dis Treat 3: 145–152.
  • Pissadaki EK, Bolam JP (2013) The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput Neurosci 7: 13. doi: 10.3389/fncom.2013.00013.
  • Rodrigo J, Alonso D, Bentura ML, Castro‑Blanco S, Encinas JM, Fernández AP, Fernández‑Vizarra P, Richart A, Santacana M, Serrano J, Martínez A (2002) Physiology and pathophysiology of nitric oxide in the nervous system, with special mention of the islands of Calleja and the circunventricular organs. Histol Histopathol 17: 973–1003.
  • Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function. Part I: principle of functional organisation. Curr Neuropharmacol 6: 235–253.
  • Schapira AHV (2007) Future directions in the treatment of Parkinson’s disease. Mov Disord 22(Suppl 17): S385–S391.
  • Schapira AHV (2008) Progress in neuroprotection in Parkinson’s disease. Eur J Neurol 15(Suppl 1): 5–13.
  • Strömberg I, Björklund  L, Johansson  M, Tomac A, Collins F, Olson  L, Hoffer B, Humpel C (1993) Glial cell line‑derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 124: 401–412.
  • Tepper JM, and Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14: 685–692.
  • Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang  L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21: 1534–1550.
  • Wei B, Nie Y, Li X, Wang C, Ma T, Huang Z, Tian M, Sun C, Cai Y, You Y, Liu F, Yang Z (2011) Emx1‑expressing neural stem cells in the subventricular zone give rise to new interneurons in the ischemic injured striatum. Eur J Neurosci 33: 819–830.
  • Wesson DW, Wilson DA (2011) Sniffing out the contributions of the olfactory tubercle to the sense of smell: hedonics, sensory integration, and more?. Neurosci Biobehav Rev 35: 655–668.
  • Xie  L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan  M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156): 373–377. doi: 10.1126/science.1241224.
  • Yadav HP, Li Y (2015) The development of treatment for Parkinson’s disease. Advances in Parkinson’s Disease 4: 59–78. doi: 10.4236/ apd.2015.43008.
  • Yager LM, Garcia AF, Wunsch AM, Ferguson SM (2015) The ins and outs of the striatum: role in drug addiction. Neuroscience 301: 529–541. doi: 10.1016/j.neuroscience.2015.06.033.
  • Zachrisson O, Zhao M, Andersson A, Dannaeus K, Häggblad J, Isacson R, Nielsen E, Patrone C, Rönnholm H, Wikström L, Delfani K, McCormack AL, Palmer T, Di Monte DA, Hill MP, Janson Lang AM, Haegerstrand A (2011) Restorative Effects of Platelet Derived Growth Factor‑BB in Rodent Models of Parkinson’s Disease. J Parkinsons Dis 1: 49–63.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9d9ed03d-a649-40e3-aee3-2f22703df798
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.