PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 23 | 2 |

Tytuł artykułu

The role of physical activity in bone metabolism and osteoporosis prevention

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Introduction. The attainment of peak bone mass in childhood and early adolescence can be ensured by proper diet, which includes a high intake of calcium and vitamin D, and by an adequate level of physical activity. During the period of skeletal involution physical exercise can reduce the rate of bone resorption, and improve motor coordination and prevention of falls. Aim of Study. The aim of the review is to discuss present-day views regarding the effects of physical activity on bone metabolism, and in particular, on osteoporosis prevention. Authors studying the effects of physical activity on bone tissue often classify physical exercises according to the volume of mechanical loads related to gravity and muscle strength. The reaction of bone tissue to mechanical loading depends on the frequency and intensity of the loads. Different forms of physical activity can be classified into weight-bearing, in which the athlete’s skeleton is loaded by the athlete’s own body weight, and non-weight-bearing. The forces acting on bone tissue in result of muscle contractions may additionally affect bone metabolism in loaded sites, and the resulting bone deformations inhibit resorption during bone remodeling. At later stages of life, prevention of falls becomes highly significant, that is why physical exercise should be aimed at the development of mass and muscle strength. In recent years there has been a growing interest in the role of vitamin D in proper bone mineralization and regulation of muscle strength and functional state of muscles. The intake of sufficient levels of vitamin D significantly lowers the risk of falls. Conclusion. Physical activity is a very important determinant of proper bone metabolism, both in pubescence and during skeletal involution. Physical activity is also conducive to the maintenance of muscle mass, which is an important element of osteoporosis prevention. Due to the crucial role of vitamin D in maintaining the proper condition of the musculoskeletal system various forms of outdoor physical activity are highly recommended.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.63-71,ref.

Twórcy

autor
  • Department of Hygiene, Poznan University of Physical Education, Poznan, Poland
autor
  • Department of Hygiene, Poznan University of Physical Education, Poznan, Poland
  • Department of Hygiene, Poznan University of Physical Education, Poznan, Poland
autor
  • Department of Hygiene, Poznan University of Physical Education, Poznan, Poland

Bibliografia

  • 1. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013; 8(1-2): 1-115.
  • 2. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling V. Physical activity and bone health. Med Sci Sports Exerc. 2004; 36(11): 1985-1996.
  • 3. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009; 51(1): S5-S17.
  • 4. Borer KT. Physical activity in the prevention and amelioration of osteoporosis in women. Interaction of mechanical, hormonal of dietary factors. Sports Med. 2005; 35(9): 779-830.
  • 5. Michalopoulou M, Kambas A, Leontsini D, Chatzinikolaou A, Draganidis D, Avloniti A, Tsoukas D, Michopoulou E, Lyritis GP, Papaioannou N, Tournis S, Fatouros IG. Physical activity is associated with bone geometry of premenarcheal girls in a dose-dependent manner. Metabol. 2013; 62(12): 1811-1818.
  • 6. Bielemann RM, Domingues MR, Horta BL, Menezes AM, Gonçalves H, Assunção MC, Hallal PC. Physical activity throughout adolescence and bone mineral density in early adulthood: the 1993 Pelotas (Brazil) Birth Cohort Study. Osteoporos Int. 2014; 25(8): 2007-2015.
  • 7. Muir JM, Ye Ch, Bhandari M, Adachi JD, Thabane L. The effect of regular physical activity on bone mineral density in post-menopausal women aged 75 and over: a retrospective analysis from the Canadian multicentre osteoporosis study. BMC Musculoskeletal Disorders. 2013; 14: 253-262.
  • 8. Feskanich D, Willett W, Colditz G. Walking and leisuretime activity and risk of hip fracture in postmenopausal women. JAMA 2002; 288(18): 2300-2306.
  • 9. Eng JJ, Pang MY, Ashe MC. Balance, falls, and bone health: role of exercise in reducing fracture risk after stroke. J Rehabil Res Dev. 2008; 45(2): 297-313.
  • 10. HolvialaJ,Kraemer WJ,Sillanpää E,Karppinen H,Avela J, Kauhanen A, Häkkinen A, Häkkinen K. Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men. Eur J Appl Physiol. 2012; 112(4): 1335-1347.
  • 11. Peterson MD, Rhea MR, Sen A, Gordon PM. Resistance exercise for muscular strength in older adults: a metaanalysis. Ageing Res Rev. 2010; 9(3): 226-237.
  • 12. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP, Sieber C, Stout JR, Studenski SA, Vellas B, Woo J, Zamboni M, Cederholm T. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014; 43(6): 748-759.
  • 13. Holy X, Zérath E. Bone mass increases in less than 4 wk of voluntary exercising in growing rats. Med Sci Sports Exerc. 2000; 32(9): 1562-1569.
  • 14. Iwamoto J, Takeda T, Sato Y. Effect of treadmill exercise on bone mass in female rats. Exp Anim. 2005; 54(1): 1-6.
  • 15. Morel J, Combe B, Francisco J, Bernard J. Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos Int. 2001; 12(2): 152-157.
  • 16. Singh R, Umemura Y, Honda A, Nagasawa S. Maintenance of bone mass and mechanical properties after short-term cessation of high impact exercise in rats. Int J Sports Med. 2002; 23(2): 77-81.
  • 17. Andreoli A, Celi M, Volpe SL, Sorge R, Tarantino U. Long-term effect of exercise on bone mineral density and body composition in post-menopausal ex-elite athletes: a retrospective study. Eur J Clin Nutr. 2012; 66(1): 69-74.
  • 18. Drenjančević I, Davidović Cvetko E. Influence of physical activity to bone metabolism. Med Glas. 2013; 10(1): 12-19.
  • 19. Morseth B, Emaus N, Jørgensen L. Physical activity and bone: the importance of the various mechanical stimuli for bone mineral density. Norsk Epidemiol. 2011; 20(2): 173-178.
  • 20. Platen P, Chae E, Antz R, Lehmann R, Kühlmorgen J, Allolio B. Bone mineral density in top level male athletes of different sports. Eur J Sport Sci. 2001; 1(5): 1-15.
  • 21. Tveit M, Rosengren BE, Nilsson JA, Ahlborg HG, Karlsson MK. Bone mass following physical activity in young years: a mean 39-year prospective controlled study in men. Osteoporos Int. 2013; 24(4): 1389-1397.
  • 22. Taaffe DR, Robinson TL, Snow CM, Marcus R. Highimpact exercise promotes bone gain in well-trained female athletes. J Bone Miner Res. 1997; 12(2): 255-260.
  • 23. Kudlac J, Nichols DL, Sanborn CF, DiMarco NM. Impact of detraining on bone loss in former collegiate female gymnasts. Calcif Tissue Int. 2004; 75(6): 482-487.
  • 24. Friesen KJ, Rozenek R, Clippinger K, Gunter K, Russo AC, Sklar SE. Bone mineral density and body composition of collegiate modern dancers. J Dance Med Sci. 2011; 15(1): 31-36.
  • 25. Mussolino ME, Looker AC, Orwoll ES. Jogging and bone mineral density in men: results from NHANES III. Am J Public Health. 2001; 91(7): 1056-1059.
  • 26. Calbet JA, Moysi JS, Dorado C, Rodriguez LP. Bone mineral content and density in professional tennis players. Calcif Tissue Int. 1998; 62(6): 491-496.
  • 27. Marks BL. Health benefits for veteran (senior) tennis players. Br J Sports Med. 2006; 40(5): 469-476.
  • 28. Andreoli A, Monteleone M, Van Loan M, Promenzio L, Tarantino U, De Lorenzo A. Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc. 2001; 33(4): 507-511.
  • 29. Rebai H, Zarrouk N, Ghroubi S, Sellami M, Ayedi F, Baclouti S, Elleuch MH, Elleuch M. Long-term basketball playing enhances bone mass and isokinetic muscle strength. Isokinet Exerc Sci. 2012; 20(3): 221-227.
  • 30. Alfredson H, Nordström P, Lorentzon R. Bone mass in female volleyball players: a comparison of total and regional bone mass in female volleyball players and nonactive females. Calcif Tissue Int. 1997; 60(4): 338-342.
  • 31. Elloumi M, Courteix D, Sellami S, Tabka Z, Lac G. Bone mineral content and density of Tunisian male rugby players: differences between forwards and backs. Int J Sports Med. 2006; 27(5): 351-358.
  • 32. Elloumi M, Ben Ounis O, Courteix D, Makni E, Sellami S, Tabka Z, Lac G. Long-term rugby practice enhances bone mass and metabolism in relation with physical fitness and playing position. J Bone Miner Metab. 2009; 27(6): 713-720.
  • 33. Vincente-Rodrigues G, Dorado C, Perez-Gomez J, Gonzalez-Henriques JJ, Calbet JA. Enhanced bone mass and physical fitness in young female handball players. Bone. 2004; 35(5): 1208-1215.
  • 34. Calbet JA, Dorado C, Díaz-Herrera P, Rodríguez- -Rodríguez LP. High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc. 2001; 33(10): 1682-1687.
  • 35. Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B, Gast U, Dimeo F, Schubert H, de Haan A, Stegeman DF, Schiessl H, Felsenberg D. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone. 2010; 46(1): 137-147.
  • 36. Santos A, Bakker AD, Klein-Nulend J. The role of osteocytes in bone mechanotransduction. Osteoporos Int. 2009; 20: 1027-1031.
  • 37. Turner CH, Pavalko FM. Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci. 1998; 3(6): 346-355.
  • 38. Bergmann P, Body JJ, Boonen S, Boutsen Y, Devogelaer JP, Goemaere S, Kaufman J, Reginster JY, Rozenberg S. Loading and skeletal development and maintenance. J Osteoporos. 2010; 2011: 786752.
  • 39. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995; 9(5): 441-445.
  • 40. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995; 57(5): 344-358.
  • 41. Frost HM. Why do marathon runners have less bone than weight lifters? A vital- biomechanical view and explanation. Bone. 1997; 20(3): 183-189.
  • 42. Korpelainen R, Keinanen-Kiukaanniemi S, Heikkinen J, Vaananen K, Korpelainen J. Effect of impact exercise on bone mineral density in elderly women with low BMD: a population-based randomized controlled 30-month intervention. Osteoporos Int. 2006; 17: 109-118.
  • 43. Zernicke R, MacKay C, Lorincz C. Mechanisms of bone remodeling during weight-bearing exercise. Appl Physiol Nutr Metab. 2006; 31(6): 655-660.
  • 44. Skerry TM. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact. 2006; 6(2): 122-127.
  • 45. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985; 37(4): 411-417.
  • 46. Frost HM. Perspectives: a proposed general model for the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec. 1996; 244(2): 139-147.
  • 47. Skerry TM. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys. 2008; 473(2): 117-123.
  • 48. Lanyon LE, Rubin CT. Static vs dynamic loads as an influence on bone remodelling. J Biomech. 1984; 17(12): 897-905.
  • 49. Judex S, Gupta S, Rubin C. Regulation of mechanical signals in bone. Orthod Craniofac Res. 2009; 12(2): 94- 104.
  • 50. Turner CH, Owan I, Takano Y. Mechanotransduction in one: role of strain rate. Am J Physiol. 1995; 269, (3 Pt 1): E438-E442.
  • 51. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002; 17(8): 1545-1554.
  • 52. Ermin K, Owens S, Ford MA, Bass M. Bone mineral density of adolescent female tennis players and nontennis players. J Osteoporos. 2012; 1-5.
  • 53. Etherington J, Harris PA, Nandra D, Hart DJ, Wolman RL, Doyle DV, Spector TD. The effect of weight-bearing exercise on bone mineral density: a study of female exelite athletes and general population. J Bone Miner Res. 1996; 11(9): 1333-1338.
  • 54. Bolam KA, Van Uffelen JG, Taaffe DR. The effect of physical exercise on bone density in middle-aged and older men: a systematic review. Osteoporos Int. 2013; 24(11): 2749-2462.
  • 55. Heinonen A, Oja P, Kannus P, Sievänen H, Haapasalo H, Mänttäri A, Vuori I. Bone mineral density of female athletes in different sports. Bone Miner. 1993; 23(1): 1-14.
  • 56. Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab. 2010; 28(3): 251-267.
  • 57. Vincent KR, Braith RW. Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exerc. 2002; 34(1): 17-23.
  • 58. Heinonen A, Oja P, Kannus P, Sievänen H, Haapasalo H, Mänttäri A, Vuori I. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone. 1995; 17(3): 197-203.
  • 59. Templeton DL, Kelly AS, Steinberger J, Dengel DR. Lower relative bone mineral content in obese adolescents: role of non-weight bearing exercise. Pediatr Exerc Sci. 2010; 22(4): 557-568.
  • 60. Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM R. 2011; 3(9): 861-867.
  • 61. Torstveit MK, Sundgot-Borgen J. Low bone mineral density is two to three times more prevalent in nonathletic premenopausal women than in elite athletes: a comprehensive controlled study. Br J Sports Med. 2005; 39(5): 282-287.
  • 62. Haapasalo H, Kannus P, Sievänen H, Heinonen A, Oja P, Vuori I. Long-term unilateral loading and bone mineral density and content in female squash players. Calcif Tissue Int. 1994; 54(4): 249-255.
  • 63. Sanchis-Moysi J, Dorado C, Olmedillas H, SerranoSanchez JA, Calbet JA. Bone and lean mass inter-arm asymmetries in young male tennis players depend on training frequency. Eur J Appl Physiol. 2010; 110(1): 83-90.
  • 64. Alfredson H, Nordström P, Pietilä T, Lorentzon R. Longterm loading and regional bone mass of the arm in female volleyball players. Calcif Tissue Int. 1998; 62(4): 303-308.
  • 65. Kannus P, Haapasalo H, Sankelo M, Sievänen H, Pasanen M, Heinonen A, Oja P, Vuori I. Effect of starting age of physical activity on bone mass in the dominant arm of tenis and squash players. Ann Intern Med. 1995; 123(1): 27-31.
  • 66. Ireland A, Maden-Wilkinson T, Ganse B, Degens H, Rittweger J. Effects of age and starting age upon side asymmetry in the arms of veteran tennis players: a crosssectional study. Osteoporos Int. 2014; 25(4): 1389-1400.
  • 67. Nilsson M, Ohlsson C, Mellström D, Lorentzon M. Previous sport activity during childhood and adolescence is associated with increased cortical bone size in young adult men. J Bone Miner Res. 2009; 24(1): 125-133.
  • 68. Nilsson M, Ohlsson C, Mellström D, Lorentzon M. Sport-specific association between exercise loading and the density, geometry, and microstructure of weightbearing bone in young adult men. Osteoporos Int. 2013; 24(5): 1613-1622.
  • 69. Kohrt WM, Barry DW, Schwartz RS. Muscle forces or gravity: what predominates mechanical loading on bone? Introduction. Med Sci Sports Exerc. 2009; 41(11): 2050- 2055.
  • 70. Yung PS, Lai YM, Tung PY, Tsui HT, Wong CK, Hung VW, Qin L. Effects of weight bearing and nonweight bearing exercises on bone properties using calcaneal quantitative ultrasound. Br J Sports Med. 2005; 39(8): 547-551.
  • 71. Almstedt HC, Canepa JA, Ramirez DA, Shoepe TC. Changes in bone mineral density in response to 24 weeks of resistance training in college-age men and women. J Strength Cond Res. 2011; 25(4): 1098-1103.
  • 72. Medelli J, Shabani M, Lounana J, Fardellone P, Campion F. Low bone mineral density and calcium intake in elite cyclists. J Sports Med Phys Fitness. 2009; 49(1): 44-53.
  • 73. Rico H, Revilla M, Hernández ER, Gomez-Castresana F, Villa LF. Body mineral content and body composition in postpubertal cyclist boys. Bone. 1993; 14(2): 93-95.
  • 74. Bilanin JE, Blanchard MS, Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc. 1989; 21(1): 66-70.
  • 75. Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab. 1993; 77(3): 770-775.
  • 76. Gennari L, Merlotti D, Martini G, Gonnelli S, Franci B, Campagna S, Lucani B, Dal Canto N, Valenti R, Gennari C, Nuti R. Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab. 2003; 88(11): 5327-5333.
  • 77. Hackney AC, Styers AG. Recovery of the endocrine system following exercise. Med Sport. 1999; 3(3): 177-189.
  • 78. Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995; 78(3): 976-989.
  • 79. Yingling VR, Davies S, Silva MJ. The effects of repetitive physiologic loading on bone turnover and mechanical properties in adult female and male rats. Calcif Tissue Int. 2001; 68(4): 235-239.
  • 80. Boudreaux RD, Swiff JM, Gasier HG, Wiggs MP, Hogan HA, Fluckey JD, Bloomfield SA. Increased resistance during jump exercise does not enhance cortical bone formation. Med Sci Sports Exerc. 2014; 46(5): 982-989.
  • 81. Villareal DT, Shah K, Banks MR, Sinacore DR, Klein S. Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: a one-year randomized controlled trial. J Clin Endocrinol Metab. 2008; 93(6): 2181-2187.
  • 82. Jensen LB, Quaade F, Sørensen OH. Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res. 1994; 9(4): 459-463.
  • 83. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, Gibbs JC, Olmsted M, Goolsby M, Matheson G. Expert Panel. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014; 48(4): 289.
  • 84. De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008; 43: 140-148.
  • 85. Duckham RL, Peirce N, Meyer C, Summers GD, Cameron N, Brooke-Wavell K. Risk factors for stress fracture in female endurance athletes: a cross-sectional study. BMJ Open. 2012; 2(6): e001920.
  • 86. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nicholas JF, Rauh MJ, Nattiv A. Higher incidence of bone stress injury with increasing female athlete triad risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014; 42(4): 949- 958.
  • 87. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. Physical activity and bone health. Med Sci Sports Exerc. 2004; 36(11): 1985-1996.
  • 88. Dawson-Hughes B. 70th Anniversary conference on: vitamins in early development and healthy aging: impact on infectious and chronic disease. Symposium 1: vitamins and cognitive development and performance serum 25-hydroxyvitamin D and muscle atrophy in the elderly. P Nutr Soc. 2012; 71(1): 46-49.
  • 89. Holick MF. Vitamin D: a millenium perspective. J Cell Biochem. 2003; 88: 296-307.
  • 90. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004; 80: 1678S-1688S.
  • 91. Jones KS, Assar S, Vandetschueren D, Bouillon R, Prentice A, Schoenmakers I. Predictors of 25(OH)D hallife and plasma 25(OH)D concentration in The Gambia and UK. Osteoporos Int. 2015; 26: 1137-1146.
  • 92. Adorini L. Immunomodulatory effects of vitamin D receptor ligands in autoimmune diseases. Int Immunopharmacol. 2002; 2: 1017-1028.
  • 93. Haussler MR, Jurutka PW, Hsieh JC, Thompson PD, Selznick SH, Haussler CA, Whitfield GK. New understanding of the molecular mechanism of receptormediatel genomie action of the vitamin D hormone. Bone. 1995; 17: 33S-38S.
  • 94. Płudowski P, Grant WB, Bhattoa HP, Bayer M, Povoroznyuk V, Rudenka E, Ramanau H, Varbiro S, Rudenka A, Karczmarewicz E, Lorenc R, Czech-Kowalska J, Konstantynowicz J. Vitamin D status in Central Europe. Int J Endocrinol. 2014; ID: 589587: 1-12.
  • 95. Campbell PMF, Allain TJ. Muscle strength and vitamin D in older people. Gerontology. 2006; 52: 335-338.
  • 96. Marantes I, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ 3rd, Amin S. Is vitamin D a determinant of muscle mass and strength? J Bone Miner Res. 2011; 26: 2860-2871.
  • 97. Ceglia L, Harris SS. Vitamin D and its role in skeletal muscle. Calcif Tissue Int. 2013; 92: 151-162.
  • 98. Wacker M, Holick MF. Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013; 5: 111-148.
  • 99. Sinha A, Hollingsworth KG, Ball S, Cheetham T. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab. 2013; 98: E509-E513.
  • 100. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)2 vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011; 152: 2976-2986.
  • 101. Webb AR, Holick MF. The role of sunlight in the cutaneous production of vitamin D3. Annu Rev Nutr. 1988; 8: 375-399.
  • 102. Guillemant J, Le HT, Maria A, Allemandou A, Pérès G, Guillemant S. Wintertime vitamin D deficiency in male adolescents: effect on parathyroid function and response to vitamin D3 supplements. Osteoporos Int. 2001; 12(10): 875-879.
  • 103. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000; 72(3): 690-693.
  • 104. Holick MF. Vitamin D deficiency. N Engl J Med. 2007; 357(3): 266-281.
  • 105. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, Wong JB, Egli A, Kiel DP, Henschkowski J. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ. 2009; 339(7725): 843-846.
  • 106. Jackson C, Gaugris S, Sen SS, Hosking D. The effect of cholecalciferol (vitamin D3) on the risk of fall and fracture: a meta-analysis. Q J Med. 2007; 100(4): 185- 192.
  • 107. Nagpal S, Na S, Rathnachalam R. Noncalcemic action of vitamin D receptor ligands. Endocr Rev. 2005; 26: 662-687.
  • 108. Rejnmark L. Effects of vitamin D on muscle function and performance: A review of evidence from randomized controlled trials. Ther Adv Chronic Dis. 2011; 2(1): 25-37.
  • 109. Grimaldi AS, Parker BA, Capizzi JA, Clarkson PM, Pescatello LS, White MC, Thompson PD. 25(OH) vitamin D is associated with greater muscle strength in healthy men and women. Med Sci Sports Exerc. 2013; 45(1): 157-162.
  • 110. Sato Y, Inose M, Higuchi I, Higuchi F, Kondo I. Changes in the supporting muscles of the fractured hip in elderly women. Bone. 2002; 30(1): 325-330.
  • 111. Snijder MB, van Dam RM, Visser M, Deeg DJ, Dekker JM, Bouter LM, Seidell JC, Lips P. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab. 2005; 90(7): 4119- -4123.
  • 112. Hamilton B, Grantham J, Racinais S, Chalabi H. Vitamin D deficiency is endemic in Middle Eastern sportsmen. Public Health Nutr. 2010; 13(10): 1528-1534.
  • 113. Lovell G. Vitamin D status of females in an elite gymnastics program. Clin J Sport Med. 2008; 18: 159- 161.
  • 114. Constantini NW, Arieli R, Chodick G, Dubnov-Raz G. High prevalence of vitamin D insufficiency in athletes and dancers. Clin J Sport Med. 2010; 20(5): 368-371.
  • 115. Hamilton B. Vitamin D and athletic performance: The potential role of muscle. Asian J Sports Med. 2011; 2(4): 211-219.
  • 116. Willis KS, Peterson J, Larson-Meyer DE. Should we be concerned about the vitamin D status of athletes? Int J Sport Nutr Exerc Metab. 2008; 18: 204-224.
  • 117. Close GL, Russell J, Cobley JN, Owens DJ, Wilson G, Gregson W, Fraser WD, Morton JP. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci. 2013; 31(4): 344-353.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9d9e9856-45ec-449f-abf6-1e6bf7439fc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.