Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 85 | 1 |
Tytuł artykułu

Demographic responses of boreal-montane orchid Malaxis monophyllos (L.) Sw. populations to contrasting environmental conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
In an age of changes in species’ geographical ranges, compounded by climatic and anthropogenic impacts, it become important to know which processes and factors influence plant populations and their persistence in the long term. Here we investigated dynamic and fitness components in twelve populations of Malaxis monophyllos (L.) Sw., situated in different geographical (regions) and ecological (type of habitat) units. Although M. monophyllos is a rare species, characterized by highly fragmented, boreal-montane distribution range, in last few decades it successfully colonized secondary habitats in Polish uplands. Our results indicate that M. monophyllos is represented mainly by small populations, which annual spatial and temporal changes might be very high, what affects the ephemeral character of these populations, regardless of the region and type of habitat. This dynamic structure, in turn, is caused by intensive exchange of individuals in populations, as well as by their short above-ground life span. Despite the large range of variation in size and reproductive traits, we can distinguish some regional patterns, which indicate boreal region as the most optimal for M. monophyllos growth and persistence in the long term, and with montane and upland/anthropogenic populations, due to lower reproductive parameters, as the most threatened. Although it should be considered that anthropogenic populations, despite their lower reproductive parameters and instability in the long term, present an intermediate, geographical and ecological character, therefore they may be valuable in shaping, both M. monophyllos’ future range, as well as its potential for response on ongoing and future changes. In general, reproduction is the main factor differentiating of M. monophyllos populations in regions, and we can suspect that it may become the cause of the future differentiation and isolation of these populations, occurring with progressive range fragmentation.
Opis fizyczny
Article 3488 [17p.], fig.,ref.
  • Institute of Biology, University of Bialystok, K.Ciolkowskiego 1j, 15-245 Bialystok, Poland
  • Institute of Biology, University of Bialystok, K.Ciolkowskiego 1j, 15-245 Bialystok, Poland
  • 1. Oostermeijer JGB, Luijten SH, den Nijs JCM. Integrating demographic and genetic approaches in plant conservation. Biol Conserv. 2003;113:389–398.
  • 2. Ackerman JD. Evolutionary potential in orchids: patterns and strategies for conservation. Selbyana. 1998;19:8–14.
  • 3. Lienert J. Habitat fragmentation effects on fitness of plant populations – a review. Journal for Nature Conservation. 2004;12:53–72.
  • 4. Burns JH, Blomberg SP, Crone EE, Ehrlen J, Knight TM, Pichancourt JB, et al. Empirical tests of life-history evolution theory using phylogenetic analysis of plant demography. JEcol. 2010;98:334–344.
  • 5. Jacquemyn H, Brys R, Hermy M, Willems JH. Long-term dynamics and population viability in one of the last populations of the endangered Spiranthes spiralis (Orchidaceae)in the Netherlands. Biol Conserv. 2007a;134:14–21.
  • 6. Beever EA, Belant JL. Ecological consequences of climate change. Mechanisms, conservation and management. Boca Raton, FL: CRC; 2012.
  • 7. del Castillo RF, Trujillo-Argueta S, Rivera-García R, Gómez-Ocampo Z, Mondragón-Chaparro D. Possible combined effects of climate change, deforestation, and harvestingon the epiphyte Catopsis compacta: a multidisciplinary approach. Ecol Evol. 2013;3:3935–3946.
  • 8. Ackerman JD. Rapid transformation of orchid floras. Lankesteriana. 2014;13:157–164.
  • 9. Young A, Boyle T, Brown A. The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol. 1996;11:413–418.
  • 10. Boyce MS, Haridas CV, Lee CT, NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol Evol. 2006;21:141–148.
  • 11. Jongejans E, Jorritsma-Wienk LD, Becker U, Dostál P, Mildén M. de Kroon H. Region versus site variation in the population dynamics of three short-lived perennials. J Ecol.2010;98:279–289.
  • 12. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC. Climate change threat to plant diversity in Europe. Proc Natl Acad Sci USA. 2005;102:8245–8250.
  • 13. Feehan J, Harley M, van Minnen J. Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review. Agronomy for Sustainable Development. 2009;29:409–421.
  • 14. Kundzewicz ZW, Radziejewski M, Pińskwar I. Precipitation extremes in the changing climate of Europe. Climate Research. 2006;31:51–58.
  • 15. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, et al. Futureextreme events in European climate: an exploration of regional climate model projection.Clim Change. 2007;81:71–95.
  • 16. Kjellström E, Nikulin G, Hansson U, Strandberg G. 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulation.Tellus. 2011;63A:24–40.
  • 17. Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schönswetter P, et al. Genetic consequences of climate changes for northern plants. Proc Biol Sci. 2012;279:2042–2051.
  • 18. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, et al. Recent plant diversity changes on Europe’s mountain summits. Science. 2012;336:353–355.
  • 19. Permesen C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst. 2006;37:637–669.
  • 20. Jump AS, Penuelas J. Running to stand still: adaptation and the response of plant to rapid climate changes. Ecol Lett. 2005;8:1010–1020.
  • 21. Nogues-Bravo D, Araujo MB, Errea MP, Martinez-Rica JP. Exposure of global mountain systems to climate warming during the 21st century. Glob Environ Change. 2007;17:420–428.
  • 22. Crawford RMM. Cold climate plants in warmer world. Plant Ecol Divers. 2008;1:285–297.
  • 23. Jongejans E, de Kroon H, Tuljapurkar S, Shea K. Plant populations track rather than buffer climate fluctuations. Ecol Lett. 2010;13:736–743.
  • 24. Franks SJ, Weber JJ, Aitken SN. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl. 2013;7:123–139.
  • 25. Totland Ø, Alatalo JM. 2002. Effects of temperature and date of snowmelt on growth, reproduction and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia.2002;33:168–175.
  • 26. Anderson JT, Panetta AM, Mitchell-Olds T. Evolutionary and ecological responses to anthropogenic climate change. Plant Physiol. 2012;160:1728–1740.
  • 27. Schaffer WM. Optimal reproductive effort in fluctuating environments. Am Nat. 1974;108:783–790.
  • 28. Lande R. Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol (Kyoto). 1998;40:259–269.
  • 29. Morris WF, Pfister CA, Tuljapurkar S, Haridas CV, Boggs CL, Boyce MS, et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology.2008;89:19–25.
  • 30. Heijmans MPD, van der Knaap YAM, Holmgren M, Limpens J. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events.Glob Chang Biol. 2013;19:240–250.
  • 31. Shashidhar KS, Arun Kumar AN. Effect of climate change on orchids and their conservation strategies. The Indian Forest. 2009;135:1039–1147.
  • 32. Swarts ND, Dixon KW. Terrestrial orchid conservation in the age of extinction. Ann Bot. 2009;104:543–556.
  • 33. Bellgard SE, Williams SE. Response of mycorrhizal diversity to current climatic changes .Diversity. 2011;3:8–90.
  • 34. Whigham DF, Willems JH. Demographic studies and life-history strategies of temperate terrestrial orchids as a basis for conservation. In: Dixon KW, Kell SP, Barrett RL, CribbPJ, editors. Orchid conservation. Kota Kinabalu: Natural History Publications (Borneo);2003. p. 138–158.
  • 35. Kull T, Hutchings MJ. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv. 2006;129:31–39.
  • 36. Meekers T, Honnay O. Effects of habitat fragmentation on the reproductive success of the nectar-producting orchid Gymnadenia conopsea and the nectarless Orchis mascula. PlantEcol. 2011;212:1791–1801.
  • 37. Koopowitz H, Howkins BA. Global climate change is confounding species conservation strategies. Integr Zool. 2012;7:158–164.
  • 38. Gillman MP, Dodd M. Detection of delayed density dependence in an orchid population. J Ecol. 1998;88:204–212.
  • 39. Brzosko E. Dynamics of island populations of Cypripedium calceolus in the Biebrza River Valley (north-east Poland). Bot J Linn Soc. 2002;139:67–77.
  • 40. Pfeifer M, Heinrich W, Jetschke G. Climate, size and flowering history determine flowering pattern of an orchid. Bot J Linn Soc. 2006;151:511–526.
  • 41. Jacquemyn H, Vandepitte K, Brys R, Honnay O, Roldán-Ruiz I. Fitness variation and genetic diversity in small, remnant populations of the food deceptive orchid Orchid purpurea.Biol Conserv. 2007;139:203–210.
  • 42. Hutchings MJ. The population biology of the early spider orchid Ophrys sphegodes Mill. III. Demography over three decades. J Ecol. 2010;98:867–878.
  • 43. Mróz L, Kosiba P. Variation in size-dependent fitness components in terrestrial orchid, Dactylorhiza majalis (RCHB.) Hunt et. Summerh., in relation to environmental factors.Acta Soc Bot Pol. 2011;80(2):129–138.
  • 44. Jäkäläniemi A, Tuomi J, Siikamäki P, Kilpia A. Colonization – extinction and patch dynamics of the perennial riparian plant, Silene tatarica. J Ecol. 2011;93:670–680.
  • 45. Jacquemyn H, de Meester L, Jongejans E, Honnay O. Evolutionary changes in plant reproductive traits following habitat fragmentation and their consequences for populationfitness. J Ecol. 2012;100:76–87.
  • 46. Pillon Y, Qamaruz-Zaman F, Fay MF, Hendoux F, Piquot Y. Genetic diversity and ecological differentiation in the endangered fen orchid (Liparis loeselii). Conserv Genet.2007;8:177–184.
  • 47. Chung MY, Nason JD, Chung MG. Effects of population succession on demographic and genetic processes: predictions and tests in the daylily Hemerocallis thunbergii (Liliaceae).Mol Ecol. 2007;16:2816–2829.
  • 48. Vakhrameeva MG, Latarenko IV, Varlygina TI, Torosyan GK, Zagulski MN. Orchids of Russia and adjacent countries (within the border of the former USSR). Ruggell: A.R.G.Ganter; 2008.
  • 49. Kaźmierczakowa R, Zarzycki K, Mirek Z, editors. Polish red data book of plants. Pteridophytes and flowering plants. 3rd ed. Cracow: Institute of Nature Conservation PAS; 2014.
  • 50. Bernacki L, Babczyńska-Sendek B, Tokarska-Guzik B, Sobierajska J. Nowe stanowiska Malaxis monophyllos (L.) SWARZ (Orchidaceae) na Wyżynie Śląskiej i terenach sąsiednich.Acta Biologia Silesiana. 1991;19:43–53.
  • 51. Czylok A, Szymczyk A. Sand quarries as biotopes of rare and critically endangered plant species. In: Mirek Z, Nikiel A, editors. Rare, relict and endangered plants and fungi in Poland.Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2009. p. 187–192.
  • 52. Fahrig L. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl. 2002;12:346–353.
  • 53. Adamowski W. The expansion of Goodyera repens (L.) R. Br. in Western Europe. In: Jackowiak B, Żukowski W, editors. Mechanisms of anthropogenic changes of the plant cover.Poznań: Bogucki Wydawnictwo Naukowe; 2000. p. 145–151. (Prace Zakładu TaksonomiiRoślin Uniwersytetu im. Adama Mickiewicza w Poznaniu; vol 10).
  • 54. Jakubska A, Malicka M, Malicki M. New data on the apophytic occurrence of Epipactis helleborine (L.) Crantz and Cephalanthera longifolia (L.) Fritsch in Populus ×canadensis plantation in Lower Silesia (south-western Poland). Biodivers Res Conserv. 2006;1–2:95–97.
  • 55. Schefferson RP, Kull T, Tali K. Mycorrhizal interactions of orchids colonizing Estonian mine tailing hills. Am J Bot. 2008;95:156–164.
  • 56. Brzosko E, Wróblewska A, Tałałaj I, Adamowski W. Patterns of genetic diversity in Platanthera bifolia (Orchidaceae) with respect to life history traits and recent range expansion.Folia Geobot. 2009;44:131–144.
  • 57. Scheffknecht S, Winkler M, Hülber K, Rosas MM, Hietz P. Seedling establishment of epiphytic orchids in forests and coffee plantations in Central Veracruz, Mexico. J Trop Ecol.2010;26:93–102.
  • 58. Nowak A. Synanthropization of sozophytes in Silesia by allochtonization analysis of the plant communities. In: Mirek Z, Nikiel A, editors. Rare, relict and endangered plants andfungi in Poland. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2009.p. 335–343.
  • 59. Jermakowicz E, Wróblewska A, Brzosko E, Mirski P, Hirse T. Phylogeographical structure of the boreal-montane orchid Malaxis monophyllos as a result of multi-directional geneflow. Bot J Linn Soc. 2015;178:138–154.
  • 60. Wheeler BD, Lambley PW, Geeson J. Liparis loeselii (L.) Rich. in eastern England: constrains on distribution and population development. Bot J Linn Soc. 1998;126:141–158.
  • 61. Reddoch JM, Reddoch AH. Population dynamics and flowering synchrony of Goodyera pubescens (Orchidaceae) in southwestern Quebec, Canada. J Torrey Bot Soc. 2007;34:379–388.[379:PDAFSO]2.0.CO;2
  • 62. Blinova IV, Chmielewski FM. Subarctic warming and its influence on the growth of orchid populations in the extreme north-east of Europe (Murmansk Region). Journal EuropäischerOrchideen. 2008;40:663–680.
  • 63. Hultén E, Fries M. Atlas of North European vascular plants north of Tropic of Cancer, vols 1–2. Königstein: Koeltz; 1986.
  • 64. Zając M. Mountain vascular plants in the Polish lowlands. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 1996. (Polish Botanical Studies; vol 11).
  • 65. Holub J, Procházka F. Red list of vascular plants of the Czech Republic – 2000. Preslia. 2000;72:203.
  • 66. Kålås JA, Viken A, Bakken T. Norwegian red list. Trondheim: Artsdatabanken; 2006.
  • 67. Pawlikowski P. Rzadkie i zagrożone rośliny naczyniowe torfowisk w dolinie Kunisianki na Pojezierzu Sejneńskim. Fragm Flor Geobot Pol. 2008;15:205–212.
  • 68. Jermakowicz E. Śleszyński M. Nowe, bogate stanowisko rzadkiego storczyka – wyblinu jednolistnego Malaxis monophyllos (Orchidaceae) w dolinie Rospudy (Puszcza Augustowska).Chrońmy Przyrodę Ojczystą. 2011;67:80–84.
  • 69. Claessens J, Kleynen J. The flower of the European orchid. Form and function. Jean Claessens & Jacques Kleynen; 2011.
  • 70. ESRI. ArcGIS Desktop: release 10. Redlands, CA: Environmental Systems Research Institute; 2011.
  • 71. Tatarenko IV, Kondo K. Seasonal development of annual shoots in some terrestrial orchid from Russia and Japan. Plant Species Biol. 2003;18:43–55.
  • 72. StatSoft Inc. STATISTICA user’s guide, version 10. Tulsa, OK; 2011.
  • 73. Oostermeijer JGB, Hartman Y. Inferring population and metapopulation dynamic of Liparis loeselii from single-census and inventory data. Acta Oecol. 2014;60:30–39.
  • 74. Hanski I. Metapopulation dynamics. Nature. 1998;396:41–49. actao.2014.08.002
  • 75. Neiland MRM, Wilcock CC. Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot. 1998;85:1657–1671.
  • 76. Brys R, Jacquemyn H, Hermy M. Pollination efficiency and reproductive patterns in relation to local plant density, population size, and floral display in the rewardingListera ovata (Orchidaceae). Bot J Linn Soc. 2008;157:713–721.
  • 77. Pellegrino G, Bellusci F. Effects of human disturbance on reproductive success and population viability of Serapis cordigera (Orchidaceae). Bot J Linn Soc. 2014;176:408–420.
  • 78. Parra-Tabla V, Vargas CF, Mangaña-Rueda S, Navarro J. Female and male pollination success of Oncidium ascendens Lindley (Orchidaceae) in two contrasting habitat patches:forest v/s agricultural field. Biol Conserv. 2000;94:335–340.
  • 79. Whigham DF, O’Neill J. The dynamics of flowering and fruit production in two eastern North American terrestrial orchids, Tipularia discolor and Liparis lilifolia. In: Wells TCE, Willems JH, editors. Population ecology of terrestrial orchids. The Hague: SPB Academic Publishers. 1991. p. 89–101.
  • 80. Primack R, Stacy E. Cost of reproduction in pink lady’s slipper orchid (Cypripedium acaule, Orchidaceae) an eleven-year experimental study of three populations. Am J Bot.1998;85:1672–1679.
  • 81. Johnson SD, Neal PR, Harder LD. Pollen fates and the limits on male reproductive success in an orchid population. Biol J Linn Soc. 2005;86:175–190.
  • 82. Rindal E, Søli GEE, Bachmann L. Molecular phylogeny of the fungus gnat family Mycetophilidae (Diptera, Mycetophiliformia). Syst Entomol. 2009;34:524–532.
  • 83. Jermakowicz E, Ostrowiecka B, Tałałaj I, Pliszko A, Kostro-Ambroziak A. Male and female reproduction success in natural and anthropogenic populations of Malaxis monophyllos(L.) Sw. (Orchidaceae). Biodiv Res Conserv. 2015;39:37–44.
  • 84. Mitchell RJ, Karron JD, Holmquist KG, Bell JM. The influence of Mimulus ringens floral display size on pollinator visitation patterns. Funct Ecol. 2004;18:116–124.
  • 85. Jacquemyn H, Brys R, Honnay O, Hermy M. Effects of coppicing on demographic structure, fruit and seed set in Orchis mascula. Basic Appl Ecol. 2008;9:392–400.
  • 86. Morecroft MD, Woodward FI. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina. New Phytol. 1996;134:471–479.
  • 87. Greiman J, Dobeš C. High genetic diversity and differentiation in relict lowland populations of Gentianella austriaca (A.J. Kern.) Holub (Gentianaceae). Plant Biol. 2008;2:628–637.
  • 88. Fritz AL, Nilsson LA. 1994. How pollinator-mediated mating varies with population size in plants. Oecologia. 100:451–462.
  • 89. Aquilar R, Ashworth L, Galetto L, Aizen MA. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett. 2006;9:968–980.
  • 90. Calvo RN, Horowitz CC. Pollinator limitation, cost of reproduction and fitness in plants: a transition-matrix demographic approach. Am Nat. 1990;136:499–516.
  • 91. Mattila M, Kuitunen MT. Nutrient versus pollination limitation in Platanthera bifolia and Dactylorhiza incarnata (Orchidaceae). Oikos. 2000;89:360–366.
  • 92. Vallius E, Arminen S, Salonen V. Are there fitness advantages associated with a large inflorescence in Gymnadenia conopsea ssp. conopsea? [Internet]. 2006 [cited 2016 Mar 10].Available from:
  • 93. MacArthur RH, Wilson EO. The theory of island biogeography. Princeton, NJ: Princeton University Press; 1967.
  • 94. Abeli T, Gentili R, Mondoni A, Orsenigo S, Rossi G. Effects of marginality on plant population performance. J Biogeogr. 2014;41:239–249.
  • 95. Lesica P, Allendorf FW. When are peripheral populations valuable for conservation? Conserv Biol. 1995;9:753–760.
  • 96. Levin DA. Local speciation in plants: the rule not the exception. Syst Bot. 1993;18:197– 208.
  • 97. Sexton JP, McIntyre PJ, Angert AL, Rice KJ. Evolution and ecology of species range limits. Ann Rev Ecol Evol Syst. 2009;40:415–436.
  • 98. Wells TCE, Rothery P, Cox R, Bamford S. Flowering dynamics of Orchis morio L. and Herminium monorchis (L.) R.Br. at two sites in eastern England. Bot J Linn Soc. 1998;126:39–48.
  • 99. Olaya-Arenas P, Meléndez-Ackerman EJ, Eglee Pérez M, Tremblay R. Demographic response by small epiphytic orchid. Am J Bot. 2011;98:2040–2048.
  • 100. Grzyl A, Kiedrzyński M, Zielińska KM, Rewicz A. The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis the lastbreath of a relict plant or a fluctuating cycle of regeneration? Plant Ecol. 2014;215:457–466.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.