
A b s t r a c t. Understanding soil spatial variability and

identifying soil parameters most determinant to soil organic carbon

stock is pivotal to precision in ecological modelling, prediction,

estimation and management of soil within a landscape. This study

investigates and describes field soil variability and its structural

pattern for agricultural management decisions. The main aim was

to relate variation in soil organic carbon stock to soil properties and

to estimate soil organic carbon stock from the soil properties. A

transect sampling of 100 points at 3 m intervals was carried out.

Soils were sampled and analyzed for soil organic carbon and other

selected soil properties along with determination of dry aggregate

and water-stable aggregate fractions. Principal component analy-

sis, geostatistics, and state-space analysis were conducted on the

analyzed soil properties. The first three principal components

explained 53.2% of the total variation; Principal Component 1 was

dominated by soil exchange complex and dry sieved macroaggre-

gates clusters. Exponential semivariogram model described the

structure of soil organic carbon stock with a strong dependence

indicating that soil organic carbon values were correlated up to

10.8 m. Neighbouring values of soil organic carbon stock, all water-

stable aggregate fractions, and dithionite and pyrophosphate iron

gave reliable estimate of soil organic carbon stock by state-space.

K e y w o r d s: aggregate-associated carbon, principal compo-

nent analysis, semivariogram, soil spatial variability

INTRODUCTION

Quantitative information on soil organic carbon (SOC)

variability within landscape is needed to improve our under-

standing of soil organic matter dynamics to support agricul-

tural management decisions. Knowledge of the structure

and pattern of variability of a soil property is valuable

information for the modelling and prediction of the soil

property. Spatial analysis of SOC and its estimation within

a landscape will, therefore, provide information needed to

understand the structure and distribution pattern of SOC and

to identify soil determinants for its prediction for informed

decisions on soil management. Forests represent one of the

largest carbon pools on earth (van de Walle et al., 2001), and

their soils an essential carbon sink. Factors like management

and texture (Sleulet et al., 2006), aggregate turnover (Oades,

1988) and oxides (Carter, 1996), in oxide-rich soils, play an

active role in SOC stabilization. A considerable positive

association of clay and SOC contents has been reported on

the Broadbalk wheat field at Rothamsted (Watt et al., 2006).

Beare et al. (1994) indicated that macroaggregate structure

provides some physical protection for SOC. Other workers

like Jastrow et al. (1996) and Six et al. (1998) have main-

tained that physical protection of SOC is mostly in soil

microaggregate fraction and microaggregates within macro-

aggregates. Although several of these studies confirmed the

positive relationship between SOC and selected soil proper-

ties, the fact that these soil properties change significantly

over short distances makes knowledge about soil variability

dispersed, requiring further synthesis.

Soil mapping has revealed extensive variability of fo-

rest soils over small areas and short distances (Boruvka et

al., 2007; Bruckman et al., 2011; Phillips and Marion,

2005). Such mappings usually show greater variability in

forest – than in similar non-forest soils (Phillips and Marion,

2005). As a key variable for a number of climatic, ecologi-

cal, hydrological and nutrient-based processes operating in

different intensities and, at different spatio-temporal scale,

SOC is highly variable in time and space (Nielsen and

Wendroth, 2003) across landscapes. Spatial variability in
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forest SOC stock is caused principally by soil properties,

forest management and resulting vegetation cover as well as

environmental factors such as mean annual temperature and

precipitation (Bruckman et al., 2011). By deduction, soil

properties may become a principal determining factor in

forest SOC variability under similar climate, forest mana-

gement and vegetation cover.

The Nimbia Forest Reserve in the moist Nigerian

Savanna is a planted teak (Tectonia grandis) plantation tra-

ditionally managed as coppice with high forest management

systems primarily for high quality timber production. In

recent years, management goals shifted to fuel wood supply

as indiscriminate poaching by nearby settlements has be-

come rampart, and this may have far-reaching negative

effects on the capacity of that forest ecosystem to sequester

atmospheric carbon to balance the anthropogenic CO2 emis-

sions. The increasing demand for high resolution spatial soil

information for planning and modelling has made accurate

prediction method vital for producing high-quality digital

soil maps. Understanding spatial distribution and pattern of

SOC stock could assist in accurate prediction and planning

to mitigate losses and maximise sequestration and, con-

sequently, reconstruct effective site-specific carbon mana-

gement policies.

This paper shows results obtained from classical and geo-

spatial analyses of soil properties along transect at a block

within the Nimbia Forest Reserve. The study examines fre-

quency distributions, principal component, semivariance

and autoregressive state-space analyses to:

– establish level of variability in measured soil parameters

along transect,

– identify parameters or clusters of parameters defining

variability,

– analyze structure of variability of SOC pools and

– estimate SOC stock.

MATERIALS AND METHODS

The Nimbia Forest Reserve is located in the north cen-

tral Nigeria, on coordinates 08� 30’-35’E and 09� 29’-31’N,

with an area of about 2 000 ha planted with teak (Tectonia

grandis), divided into 220 compartments. Altitude of the

sampling sites ranged from 620 to 641 m. All soils were

formed on newer basalts and classified as Ultisols

(Plinthustults). The prevailing natural vegetation ranged

from Southern Guinea Savanna woodlands to Derived

Savanna with vegetation cover such as Daniella Oliveri,

Khaya senegalensis, Khaya grandifolia, Parkia clapper-

tonia, Millettia thonningii etc. Mean annual rainfall is

1 260 m and annual mean temperature is 22°C.

Geo-referenced soil samples were collected from

compartment NF 80 of the Reserve. Surface soil (0-0.15 m)

was sampled along a 300 m transect, at 3 m intervals to give

100 samples. The soil samples were divided into two parts:

one part was crushed and sieved through a 2 mm sieve after

air drying, for soil pH (1:2.5, soil water suspension) and

particle size analyses. Prior to particle size determination,

sodium hexametaphosphate was used for soil dispersion and

the hydrometer method was used for particle size determi-

nation. The procedures of Page et al. (1982) were adopted

for analysis of available phosphorus (Bray 1 method), ex-

changeable cations and cation exchange capacity (neutral

normal ammonium acetate method) for these soil samples.

The pyrophosphate (Fep), oxalate (Feo) and dithionite (Fed)

forms of iron were analyzed, respectively, using the pro-

cedure of McKeaque (1967), Schwertmann (1964) and;

Mehra and Jackson (1960). Physical fractionation proce-

dure was employed to determine the quantity and stability of

soil aggregate fractions (modified from Cambardella and

Elliott, 1994). Briefly, a sub-sample of air dry soil was dry

sieved through five sieves of varying mesh sizes (5.0-2.0 mm

ie, d5-2, very large macroaggregates, 2.0-1.0 mm is d2-1,

large macroaggregates, 1.0-0.25 mm referred to d1-0.25, macro-

aggregates, 0.25-0.0053 mm is d0.25-0.0053 or microaggre-

gates and; < 0.0053 mm called d<0.0053, silt plus clay sized

particles) on a mechanical sieve shaker (Eijelkamp Agri-

search Equip.) set at level 6 for 3 min. Aggregate fractions

retained on each sieve were weighed and recorded. For wa-

ter stable aggregate fractions, the second subsample of air

dried soil was wet sieved (slaking pre-treatment) through

a series of five sieves to obtain five aggregate fractions:

– 5.0-2.0 mm (WVLM, very large macroaggregates),

– 2.0-1.0 mm (WLM, large macroaggregates),

– 1.0-0.25 mm (WM, macroaggregates),

– 0.25-0.0053 mm (WMC, microaggregates) and

– < 0.0053 mm (WSC, silt plus clay-sized particles).

Aggregate fractions obtained through wet sieving were

oven dried (60�C) and corrected for sand (Six et al., 2000a).

Surface soil bulk density (�b, 0-5 cm) was determined by the

core method (Blake and Hartge, 1986) and used to convert

SOC concentrations to mass estimates by depth. The SOC

content was determined by digestion in chromic acid and the

excess was titrated against ferrous ammonium sulphate after

the addition of concentrated phosphoric acid (Nelson and

Sommers, 1982).

Descriptive statistics of central tendency and dispersion

were calculated for each soil parameter using PASW 18

(SPSS, 2010). The shape of the frequency distribution was

described by the coefficient of skewness. A varimax rotation

with Kaiser Normalization (Kaiser, 1958) was performed in

the Principal Component Analysis (PCA). The essence of

the latter was to redistribute the variance in each parameter

in such a way that each contributes strongly to one of the

components and little to the others (Boruvka et al., 2007).

The PCA allows for the identification of clusters of para-

meters that are interrelated by identifying latent principal

components (PCs) and the eigenvalue of a PC explains the

extent to which a particular PC explains multiple correla-

tions of the analyzed parameters (Burstyn, 2004).
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Semivariogram was calculated to determine spatial de-

pendence levels for the parameters, using the software GS
+
,

Geostatistics for the Environmental Sciences, version 9.0

(Robertson, 2008). The experimental semivariogram was

fitted to theoretical models and the shape parameters such as

nugget effect (Co), range (Ao) and the sill (Co + C) were

obtained and used to describe the spatial dependence for

each soil parameter. The ‘nugget effect’ is defined as the

variation at scale finer than the field sampling while the ‘sill’

is the maximum semivariance value where there is spatial

dependence between sampled soil parameter values, and

‘range’ is the maximum distance where sampled soil para-

meter values are spatially correlated.

The semivariance value for each variable is defined as

follows (Nielsen and Wendroth, 2003):
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where: �( )h is the experimental semivariance value at lag

distance h; z xi( ) and z x hi( )	 are observed values of z at

xi and x hi( )	 , respectively. N(h) is the number of pairs of

observations at the distance h. Usually, semivariance values

increase with sampling distance, approaching a plateau

(constant value) referred to as ‘sill’.

For numerical reasons, data for autoregressive state-

space analysis are usually scaled or normalized (Wendroth

et al., 2003) as:
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where: Xi, sc is the normalized value of the original value Xi

and it is calculated based on the mean, X , and the standard

deviation, �, of the original data set.

The analyzed of soil properties were selected with SOC

for the prediction of SOC using the state-space approach.

These seven properties (the five water stable aggre gate frac-

tions, Fep and Fed) were selected because they correlated

with SOC stock from the result of cross-correlation analysis

(not shown here) performed. For estimation of SOC, a first-

order autoregressive process with the aid of a state-space

model approach was employed on the scaled parameters

described by the state equation:

Z x Z x u xj i jj j i z j i( ) ( ) ( )� � 	�1 , (3)

with state vector Z xj i( ) at position i is related to the same

vector at previous position i-1 through the state coefficient

matrix �jj (transition matrix) and an error associated to the

state u xz j i( ). The state-equation is embedded in an obser-

vation equation with observation vector Y xj i( ) related to

the state vector Z xj i( ) through the observation matrix

M xjj i( ) and by the observation error, v xy j i( ) as given

below:

Y x M x Z x v xj i jj i j i y j i( ) ( ) ( ) ( )� 	 . (4)

The observation vector, Y xj i( ) of the process is gene-

rated as a function of the state vector Z xj i( ). The assump-

tions were that v xj i( ) and u xj i( ) are normally distributed

and independent as well as being non-correlated among

themselves for both lags. The SOC at location i was

modelled as a function of soil parameters at location i-1.

RESULTS

Few of the parameters analyzed, such as soil pH, �b

coarse sand and dry-sieved macro-(d1-0.25) and micro-

(d0.25-0.0053) aggregate fractions, tended to be more homo-

geneous in distribution, with coefficients of variation (CV)

< 15% (Table 1) and only slightly skewed (< 1). The mean

and median values of these soil properties were the same but

for coarse sand whose median value was close to the mean.

From their mean values, soil pH was slightly acidic in

reaction and within the range classified as optimal for most

plant growth (Roy et al., 2006); �b was low for a clay loam

soil and may not pose a constraint to water infiltration if there

is no abrupt increase in value. The d1-0.25 and d0.25-0.0053
aggregate fractions constituted 18% of the total dry sieved

fractions, with larger aggregate fractions accounting for

higher proportion of the total dry aggregates in bulk soil, an

indication of the resilience of the soil structure to withstand

wind erosion menace.

Coefficients of variation for a substantial number of

analyzed soil properties were within 15 to 50% range, an in-

dication of a considerable level of heterogeneity in the dis-

tribution of the parameters (Table 1). Most of these soil para-

meters still recorded skewness 
1. Considerable skewed (�1)

distributions were, however, recorded for available phospho-

rus (AP), wet sieved very large macroaggregate ie 5-2 mm

(WVLM) and dry sieved silt plus clay fraction (d<0.0053).

For SOC stock, an indication of variability in its spatial

distribution was evident with a CV of 16.1%, slightly skew-

ed (< 1), with similar mean and median values.

The Feo, K
+

and Na
+

distributions were highly variable

with large CV values exceeding 50% and highly skewed (>1)

except for K
+

with coefficient of skewness equalling 0.81.

In conclusion, the soil parameters analyzed revealed a mo-

derate fertility status with a high variability. The results of

the first and second moments of probability distribution

clearly showed that the arithmetic means of these analyzed

soil properties cannot appropriately characterize the samp-

led soil parameters (Nielsen and Wendroth, 2003).

The PCA was aimed at identifying clusters of analyzed

soil properties that would explain significant proportion the

total variation (Duffera et al., 2007). There were five PCs

with significant loadings that collectively explained 66.4%

of the total variance (Table 2). The PC 1 scores increased

with very large macroaggregate (d5-2) and large macroag-

gregate (d2-1) of dry sieved aggregate fractions, soil pH,

CEC and exchangeable K
+
, Na

+
, Ca

2+
, Mg

2+
; explaining

26.1% of the total variation. Negative loadings were
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Parameters Units Mean Median
Standard

deviation Skewness CV (%)

Soil pH 6.06 6.05 0.57 0.02 9.4

CEC

c molc kg-1

13.4 13.8 3.25 -0.63 24.3

K+ 0.18 0.14 0.11 0.81 58.3

Na+ 0.46 0.36 0.42 1.25 91.3

Ca2+ 4.71 4.40 2.09 0.68 44.4

Mg2+ 3.02 2.90 1.37 0.26 45.4

Fep

%

0.01 0.01 0.004 0.44 40.0

Feo 0.18 0.17 0.15 9.90 83.3

Fed 0.05 0.04 0.02 0.78 40.0

SOC t ha-1

41.1 41.5 6.59 0.25 16.1

�b Mg m-3 1.03 1.03 0.10 0.17 9.3

Clay

%

30.66 31.0 8.28 0.09 27.0

Silt 25.94 22.0 9.18 0.83 35.4

Sand 43.4 43.0 8.91 0.31 20.5

AP mg kg-1

0.27 0.23 0.10 1.90 39.0

d5-2

g g-1

0.85 0.81 0.22 0.68 25.9

d2-1 0.26 0.26 0.05 0.18 19.2

d1-0.25 0.22 0.22 0.02 - 0.66 9.1

d0.25-0.0053 0.03 0.03 0.01 - 0.07 3.0

d<0.0053 6 10-4 5 10-4 3 10-4 1.04 50.0

Coarse sand

%

67.3 66.5 7.22 0.46 10.7

Medium sand 7.2 7.0 1.82 -0.13 25.3

Fine sand 25.6 27.0 6.13 -0.34 24.0

WVLM

g g-1

0.19 0.17 0.09 1.08 45.8

WLM 0.11 0.11 0.04 0.47 33.6

WM 0.14 0.14 0.03 -0.006 18.6

WMc 0.03 0.03 0.01 0.28 24.1

WSC 0.002 0.002 0.006 0.84 30.0

�b – soil bulk density, AP – available phosphorus, Feo – oxalate extractable iron, Fed – dithionite extractable iron, Fep – pyrophosphate

extractable iron, K+ – exchangeable potassium, Na+ – exchangeable sodium, Ca2+ – exchangeable calcium, Mg2+ – exchangeable

magnesium, CEC – cation exchange capacity, SOC – soil organic carbon stock, WVLM, WLM, WM, WMc, WSC – water stable

aggregate fractions retained on 5-2, 2-1, 1-0.25, 0.25-0.0053 mm, <0.0053 mm sieves, respectively, d5-2, d2-1, d1-0.25, d0.25-0.05, d<0.05 – dry

sieved aggregate fractions retained on 5-2, 2-1, 1-0.25, 0.25-0.0053 mm, <0.0053 mm sieves, respectively, CV – coefficient of

variation.

T a b l e 1. Mean, median, standard deviation, coefficient of variation and skewness of the parameters sampled along a transect (n = 100)
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Parameters Units

Principal components

PC 1 PC 2 PC 3 PC 4 PC 5

Eigenvalue 7.8 4.7 3.4 2.0 1.9

Variance
%

26.1 15.8 11.3 6.7 6.5

Cumulative variance 26.1 41.9 53.2 59.9 66.4

Rotated loadings of retained eigenvectors Communality

Soil pH 0.765a 0.347 0.014 0.101 -0.139 0.742

CEC

c molc kg-1

0.556a -0.335 0.378 -0.371 -0.161 0.815

K+ 0.784a -0.015 -0.115 0.023 -0.180 0.741

Na+ 0.517a -0.545a -0.074 -0.423 -0.078 0.793

Ca2+ 0.810a 0.102 0.176 -0.148 -0.234 0.876

Mg2+ 0.793a 0.022 0.130 -0.201 -0.234 0.876

Fep

%

-0.017 -0.641a 0.368 0.052 -0.032 0.560

Feo -0.076 0.189 0.138 -0.247 -0.020 0.516

Fed -0.534a -0.309 0.106 0.198 0.233 0.383

SOC t ha-1 0.404 0.182 0.068 0.053 0.651a 0.723

�b Mg m-3 -0.096 0.144 -0.677a 0.157 0.418 0.818

Clay

%

0.175 -0.302 -0.544a 0.536a -0.443 0.906

Silt -0.502a 0.433 -0.245 -0.585a 0.102 0.902

Sand 0.354 -0.165 0.758a 0.106 0.307 0.861

AP mg kg-1 0.391 0.453 -0.198 0.200 -0.484 0.497

d5-2

g g-1

0.755a -0.193 -0.404 -0.111 0.242 0.903

d2-1 0.756a 0.487 -0.029 0.020 -0.047 0.860

d1-0.25 -0.336 0.433 0.424 0.048 -0.333 0.802

d0.25-0.0053 -0.871a -0.216 0.192 0.028 -0.051 0.904

d<0.0053 -0.734a -0.291 0.034 0.390 -0.006 0.860

Coarse sand

%

0.354 -0.165 0.758a 0.106 0.307 0.909

Medium sand -0.498 0.396 0.207 0.026 -0.009 0.580

Fine sand -0.405 0.796a 0.120 -0.089 -0.086 0.859

WVLM

g g-1

0.408 0.698a 0.213 0.200 0.209 0.787

WLM 0.298 0.814a 0.178 0.133 0.116 0.832

WM -0.565a 0.544a -0.098 -0.161 -0.026 0.691

WMc -0.793a -0.274 0.073 0.019 0.117 0.762

WSC -0.679a -0.002 -0.098 0.247 -0.052 0.724

a – rotated standardized data with loadings >�0.5. Explanations as in Table 1.

T a b l e 2. Principal component loadings and estimated communalities of the parameters along a transect



recorded for dry sieved silt plus clay and d0.25-0.0053
fractions, silt mineral particle, Fed and macro- and micro-

aggregate fractions of wet sieved soil samples and the silt

and clay fractions, which only showed that they are lacking

latent variable associated with PC 1 (Burstyn, 2004). Six soil

properties were clustered in PC 2 which explained 15.8% of

the total variation. There was a sharp drop in eigenvalue

from PC 1 to PC 2 (ie 7.8 to 4.7). Here, all the wet sieved

macroaggregate fractions and fine sand displayed latent

variable associated with the PC. Sand and clay mineral par-

ticles and �b clustered at PC 3, which accounted for 11.3%

of total variation (Table 2). In this PC, only sand mineral

particle recorded a positive loading (0.758). For PCs 4 and 5

which, respectively, explained 6.7 and 6.5% of the total

variance, had clay and SOC stock as sampled parameters,

respectively. Communality values are indicative of the pro-

portion of each parameter explained by PCA. In this analysis,

communality values generally ranged from medium (0.516

for Fep) to high (0.909 for coarse sand), except for Fed and

AP which recorded low communality values (Table 2). In

conclusion, spatial variability in the top soil (15 cm) of this

forest field was dominated by three principal clusters which

accounted for 53.2%. The first factor was the exchange

complex cluster and the second was the water stable soil

structure cluster, dominated by the wet sieved macro-

aggregate fractions, and the third cluster, which described

less variability in the field, was the sand mineral particle size

(sand and fine sand). A high proportion of most of the analy-

zed parameters were effectively explained by the PCA and

this can be confirmed from their communality values.

Based on the results obtained from semivariance

analysis, it is evident that different pattern of spatial

structure and level of spatial dependence was exhibited by

the analyzed soil properties. The exchange complex cluster

(ie exchangeable bases and CEC) that was modelled was

best fitted by a spherical model except for CEC (Table 3).

From the soil particle size cluster, silt, sand and medium

sand particle fractions fitted the spherical model while

medium sand fraction had a good fit with coefficient of

determination, R
2

of 0.97, and a residual sums of squares,

RSS of 0.261 (Table 3). The sand and silt mineral particle

fractions weakly fitted with RSS of 4.247 and 1.073,

respectively. The lower the RSS, the better the model fit, and

RSS is a more robust indicator of model fit than the R
2

(Robertson, 2008) as it provides exact measure of model fit-

ness. The soil structure cluster (dry and water-stable aggre-

gate fractions) was diffuse in model type and fit, while the

dry sieved large macroaggregate (d2-1), water stable micro-

aggregate (WMc) and their respective silt plus clay fractions

were well fitted to the spherical model, depicting spatial

structures whose boundaries are not clearly defined, while

the remaining water stable macroaggregate fractions (WVLM,

WLM and WM) exhibited structures with smoother spatial

pattern (Gaussian) than the spherical model (Table 3).

Experimental semivariogram models for coarse and fine

sand, Fed, Feo and soil pH displayed a continuous gradual

variation which fit the Gaussian model, and RSS for coarse

and fine sand were large. For Fep, its pure nugget and ex-

ponential model for �b (Table 3), semivariogram was pure

nugget effect indicating no observed spatially structured

variation between adjacent observations at the sampling

scale (Nielsen and Wendroth, 2003), inferring large point-

to-point variations mainly controlled by random factors with

no spatial dependence at the scale of investigation. The va-

riation in CEC, AP, clay and dry sieved macroaggregate

fraction fitted the rather abrupt changes at all distances and

was best depicted by the exponential model; only the RSS

for clay and CEC were large suggesting a weak fit (Table 3).

The SOC stock fits an exponential model (Fig. 1) with

a strong spatial dependence at 10.8 m (Table 3). As mentio-

ned earlier, the maximum distance over which adjacent

observations of a parameter are correlated is referred to as

effective range (Ao) and it ranges from 10.8 m for SOC stock

to 932.7 m for available phosphorus. Spatial dependence has

been classified as strongly, moderately and weakly spatially

dependent if the nugget-to-sill ratio falls within <25, 25-75

and >75%, respectively (Duffera et al., 2007). Apart from

Fep and �b, all other parameter were between moderately to

strongly spatially dependent.

Autoregressive SOC stock estimation is presented for

the soil based state vector. Using all 100 observations of each

of eight selected soil parameters, values of SOC with space

analysis were estimated (Fig. 2) with sum of transition coef-

ficients being 1.1774 (=-0.0215 +0.554 + 0.0085 +0.2373

-0.2921 +0.054 -0.244 +0.8811). The contribution of neigh-

bouring values of organic carbon stock, large macro-

aggregates and silt plus clay fractions were much lower than

those of the remaining five soil parameters. The lowest con-

tribution to the SOC estimation was wet sieved large macro-

aggregate (ie 2.0-1.0 mm) while the pyrophosphate iron

made the highest contribution to SOC estimation. A linear

regression between estimated and measured values of SOC

(Fig. 3) showed a reliable estimation as it yielded a coeffi-

cient of determination R
2

of 0.955.

DISCUSSION

Complex interactions between SOC stock and aggre-

gate stability exist in soils (Lawal et al., 2009). Aggregation

is one of the pedospheric processes that facilitate SOC

storage. On the other hand, SOC maintains the stability of

soil structure. The mechanisms promoting these complex

interactions may probably have been responsible for the

correlation of aggregate fractions with SOC stock. For PCA,

magnitude of the eigenvalue was used as criterion for

interpreting the relationship between soil properties. The

aggregate-SOC stock interaction theory could have ac-

counted for the various results under PCA. In the process of

aggregation, formation of soil organo-mineral complexes

190 J.O. OGUNWOLE et al.



takes place and some organic matter, on the other hand, gets

encapsulated within stable soil aggregates. This process

ensures the protection of the encapsulated soil organic

matter against microbial processes and enzymatic reaction

(Holeplass et al., 2004), consequently increasing the organic

carbon capacity due to soil structure. It is also widely known

that the clay size fraction provides protection for organic

carbon against microbial and enzymatic processes (Trujilo

et al., 1997). Six et al. (2004) suggested three mechanisms

for SOC protection. First, is physical stabilisation through

microaggregation and, secondly, intimate association with

silt and clay particles as earlier suggested with clay size

fraction. Finally, formations of recalcitrant SOC can bio-

chemically stabilize the organic carbon in soils.
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Parameters Units Model
Nugget

(Co)

Sill

(C +Co)
Co/(C+Co)

Range

(Ao, m) R2
Spatial

dependence RSS

Soil pH Gaussian 0.074 0.058 0.13 101.9 0.99 strong 1.05 10-3

CEC

c molc

kg-1

Exponential 3.3 16.36 0.20 162.6 0.92 strong 13.6

K+ Spherical 0.00254 0.01768 0.14 177.1 0.98 strong 1.23 10-6

Na+ Spherical 0.027 0.201 0.134 110.1 0.98 strong 9.3 10-4

Ca2+ Spherical 1.63 8.07 0.202 149.4 0.97 strong 0.33

Mg2+ Spherical 0.742 2.735 0.271 144.7 0.72 moderate 0.034

Fep

%

Pure nugget 0.000 0.00002 – – – random –

Feo Gaussian 0.0238 0.0606 39.3 283.7 0.99 moderate 3.22 10-6

Fed Gaussian 0.00009 0.00034 0.265 87.9 0.94 moderate 7.95 10-9

SOC t ha-1 Exponential 7.10 44.66 0.159 10.8 0.30 strong 93.9

�b Mg m-3 Exponential 0.00036 0.00862 0.042 21.0 0.38 strong 1.51 10-5

Clay

%

Exponential 17.1 109.4 0.156 173.7 0.92 strong 404

Silt Spherical 0.1 134.9 0.0007 101.0 0.96 weak 1073

Sand Spherical 15.4 84.5 0.182 33.7 0.38 weak 4247

AP mg kg-1 exponential 0.0056 0.02 0.28 932.7 0.72 moderate 1.4 10-5

d5-2

g g-1

Gaussian 0.019 0.0736 0.258 134.9 0.99 moderate 6.9 10-5

d2-1 Spherical 0.0005 0.0038 0.132 232.8 0.99 strong 1.2 10-7

d1-0.25 Exponential 0.00026 0.00058 0.448 398.7 0.74 moderate 2 10-8

d0.25-0.0053 Gaussian 0.00003 0.00015 0.200 140.1 0.99 strong 2.4 10-10

d<0.0053 Spherical 0.00019 0.00125 0.152 105.3 0.99 strong 1.38 10-8

Coarse sand

%

Gaussian 16.4 110.16 0.149 209.5 0.99 strong 105

Medium sand Spherical 2.0 5.704 0.351 270.6 0.97 moderate 0.261

Fine sand Gaussian 11.8 82.98 0.142 223.3 0.99 strong 37.3

WVLM

g g-1

Gaussian 0.00426 0.03022 0.141 537.9 0.80 strong 9.6 10-6

WLM Gaussian 0.00063 0.00655 0.096 537.9 0.87 strong 2.9 10-7

WM Gaussian 0.00032 0.0012 0.267 146.2 0.99 moderate 1.6 10-8

WMc Spherical 0.00003 0.0001 0.300 230.5 0.97 moderate 1.4 10-10

WSC Spherical 0.00181 0.0043 0.424 103.5 0.87 moderate 1.3 10-6

Explanations as in Table 1.

T a b l e 3. Parameters of the fitted semivariogram models for the measured soil properties



Exchangeable cations have been generally accepted as

critical for stabilisation of SOC and aggregates. This is made

possible through their roles in the formation of clay-poly-

valent cation-organic matter complexes (Muneer and

Oades, 1989), consequently increasing the capacity of the

soil to exchange cations (CEC). For instance, calcium and

potassium additions to soils have been reported to increase

aggregation levels in soils (Imbufe et al., 2005; Six et al.,

2000b) leading to increased SOC protection. Further, the

amount of organic carbon in particle fractions may have

been influenced by mineralogy, specifically iron oxides. In

an earlier work, Ogunwole and Ogunleye (2004) reported

a strong positive correlation between total elemental iron

(Fe) and macroaggregation, suggesting a contributory role

of Fe to aggregation of soil particles at the level of macro-

aggregation. The high transition coefficients of the Fep and

Fed in the state-space equation here portray the contributory

roles of these iron fractions in SOC storage. Oxides of iron

are dominant binding agents in oxide-rich tropical soils

through the adsorption of organic matter on oxide surfaces

(Oades et al., 1989) and/or electrostatic binding may occur

between these oxides and negatively charged clay mineral

particles (El-Swaify and Emerson, 1975). A coat of iron oxi-

des on the surface of minerals may form bridges between

primary and secondary particles (Muggler et al., 1999) faci-

litating macroaggregation and stabilization of SOC (Shang

and Tiessen, 1997, 1998).

It is noteworthy from this study that SOC stock was

significantly influenced by aggregate stability mechanisms,

suggesting that most organic carbon stock in this soil was

that protected or sequestered in soil aggregates. Any mana-

gement practice or intervention that adversely affects sta-

bility of these aggregates will lead to the release of seque-

stered organic carbon, leading to reduction in SOC stock.
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Fig. 1. Measured and fitted semivariogram of soil organic carbon

stock sampled along a transect.

Fig. 2. State-space estimation of soil organic carbon stock based on values of the soil properties.

Fig. 3. Classical regression of state-space estimated and measured

soil organic carbon stock.
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CONCLUSIONS

1. Distributions of soil properties such as water stable

aggregate fractions and various forms of iron in forest

Ultisols (Plinthustults) were very diverse and variable.

2. A combination of 16 parameters explained 53.2 to

66.4% of the variation in soil properties with the cumulative

eigenvalues indicating the high level of variability in soil

properties.

3. Soil exchange complex and soil structure factors

were principal determinants of variation in soils.

4. The mechanisms that facilitated aggregate stability

and soil organic matter protection were the link for the soil

organic carbon stock in soils.

5. The state-space analysis reliably estimated the soil

organic carbon which is generated and created by aggregate

stability, oxalate and pyrophosphate forms of iron of

neighbouring locations, with the largest contribution from

the pyrophosphate.

6. Results obtained can assist as a basis in soil mana-

gement for the soil organic carbon in these soils.
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