PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 1 |

Tytuł artykułu

The influence of soil compaction on chemical properties of mollic fluvisol soil under Lucerne (Medicago sativa L.)

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this study was to determine the effects of soil compaction on the chemical properties of soil and herbage yield of lucerne (Medicago sativa L.). A field experiment was conducted on a silty loam Mollic Fluvisols soil in 2003-07. Four compaction treatments were applied three times annually by tractor using the following number of passes: control without experimental traffic, two passes, four passes, and six passes. This study confirmed the unfavorable effect of multiple tractor passes on lucerne dry matter production. The results showed that tractor traffic reduced the yields of lucerne, particularly during the second and third harvests in each year. Soil compaction caused by tractors changed some chemical properties of soil. Tractor passes resulted in increasing pH and EC. It also increased P and Zn content. Most of these changes were statistically significant only in the deeper 20-30 cm soil layer. This effect could be ascribed to higher soil density and lower air permeability. The upper (0-20 cm) soil layer was resistant to changes in chemical properties, probably due to the dense root system that recovers the soil after compaction and improves physical properties. The decrease in lucerne production probably was the result of mechanical damages to roots and above-ground parts of plants rather than problems in nutrient uptake. We can conclude that chemical properties, particularly N content, are not significantly important factors in reduction of lucerne production exposed to tractor traffic.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

1

Opis fizyczny

p.107-113,fig.,ref.

Twórcy

autor
  • Institute of Machinery Exploitation, Ergonomics and Production Processes, University of Agriculture in Kraków, Poland
autor
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Kraków, Poland

Bibliografia

  • 1. GŁĄB T. Effect of tractor wheeling on root morphology and yield of lucerne (Medicago sativa L.). Grass Forage Sci., 63, 398, 2008.
  • 2. VOLDEN B., SVEISTRUP T.E., JORGENSEN M., HARALDSEN T.K. Effects of traffic and fertilization levels on grass yields in northern Norway. Agr. Food Sci. Finland, 11, 219, 2002.
  • 3. COELHO M.B., MATEOS L., VILLALOBOS F.J. Influence of a compacted loam subsoil layer on growth and yield of irrigated cotton in Southern Spain. Soil Till. Res., 57, 129, 2000.
  • 4. LIPIEC J., STĘPNIEWSKI W. Effect of soil compaction and tillage system on uptake and losses of nutrients. Soil Till. Res., 35, 37, 1995.
  • 5. BHANDRAL R., SAGGAR S., BOLAN N.S., HEDLEY M.J. Transformation of nitrogen and nitrous oxide emission from grassland soils as affected by compaction. Soil Till. Res., 94, 482, 2007.
  • 6. HORN R., WAY T., ROSTEK J. Effect of repeated tractor wheeling on stress/strain properties and consequences on physical properties in structured arable soils. Soil Till. Res., 73, 101, 2003.
  • 7. BRZEZIŃSKA M., STĘPNIEWSKA Z., STĘPNIEWSKI W., WŁODARCZYK T., PRZYWARA G., BENNICELLI R. Effect of oxygen deficiency on soil dehydrogenase activity (pot experiment with barley). International Agrophysics, 15, 3, 2001.
  • 8. PIEKARZ J., LIPIEC J. Selected physical properties and microbial activity earthworm casts and non-ingested soil aggregates. International Agrophysics, 15, 181, 2001.
  • 9. KACZMAREK Z., WOLNA-MURAWKA A., JAKUBAS M. Changes of the number of selected microorganism groups and enzymatic activity in the soil inoculated with effective microorganisms (EM). Journal of Research and Applications in Agricultural Engineering, 53, (3), 122, 2008.
  • 10. MIJANGOS I., PEREZ R., ALBITU I., GARBISU C. Effects of fertilization and tillage on soil biological parameters. Enzyme Microb. Tech., 40, 100, 2006.
  • 11. MARSCHNER P., KANDELER E., MARSCHNER, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem., 35, 453, 2003.
  • 12. DORAN W.J., PERKIN T.B. Quantitative indicators of soil quality: A minimum data set. [in:] Methods for assessing soil quality. J. W. Doran and A. J. Jones (Ed.), SSSA Special Publication, 49, SSSA, Madison, WI, USA, 25, 1996.
  • 13. CORWIN D.L., LESCH S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agr., 46, 11, 2005.
  • 14. NOSALEWICZ A., NOSALEWICZ M. Effect of soil compaction on dehydrogenase activity in bulk soil and rhizosphere. International Agrophyics, 25, 47, 2011.
  • 15. JOHNSON C.K., DORAN J.W., DUKE H.R., WIENHOLD B.J., ESKRIDGE K.M., SHANAHAN J.F. Field-scale electrical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J., 65, 1829, 2001.
  • 16. NEVENS F., REHEUL D. The consequences of wheelinduced soil compaction and subsoiling for silage maize on a sandy loam soil in Belgium. Soil Till. Res., 70, 175, 2003.
  • 17. KRISTOFFERSEN A.R., RILE H. Effects of soil compaction and moisture regime on the root and shoot growth and phosphorus uptake of barley plants growing on soils with varying phosphorus status. Nutr. Cycl. Agroecosys., 72, 135, 2005.
  • 18. CAPORALI F., ONNIS O. Validity of rotation as an effective agroecological principle for a sustainable agriculture. Agr. Ecosyst. Environ., 41, 101, 1992.
  • 19. ANGERS D.A., BISSONNETTE N., LEGERE A., SAMSON N. Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Can. J. Soil. Sci., 73, 39, 1993.
  • 20. IUSS Working Group WRB. 2007. World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO. Rome. 2007.
  • 21. RUTKOWSKA B., SZULC W., BOMZE K., FELCZYŃSKI K. Usefulness of Different Extraction Solutions for Determination of Plant Availability of Heavy Metals. Ecological Chemistry and Engineering, 17, (4-5), 483, 2010.
  • 22. BRZEZIŃSKA M., WŁODARCZYK T. Enzymes of intracellular redox transformations (oxidoreductases). Acta Agrophysica, Rozprawy i Monografie, 3, 11, 2005.
  • 23. MOTAVALLI P.P., ANDERSON S.H., PENGTHAMKEERATI P., GANTZER C.J. Use of soil cone penetrometers to detect the effects of compaction and organic amendments in claypan soils. Soil Till. Res., 74, 103, 2003.
  • 24. DE NEVE S., HOFMAN G. Influence of soil compaction on C and N mineralization from soil organic matter and crop residues. Biol. Fert. Soils, 30, 544, 2000.
  • 25. WHALLEY W.R., DUMITRU E., DEUTER A.R. Biological effects of soil compaction. Soil Till. Res., 35, 53, 1995.
  • 26. PENGTHAMKEERATI P., MOTAVALLI P.P., KREMER R.J., ANDERSON S.H. Soil carbon dioxide efflux from a claypan soil affected by surface compaction and applications of poultry litter. Agr. Ecosyst. Environ., 109, 75, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9d6c65a1-57a9-4c79-821c-bba9b3626d27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.