PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 2 |

Tytuł artykułu

Identification of MsHsp23 gene using annealing control primer system

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To identify potential candidates for acquiring stress tolerance, a new annealing control primer (ACP) system was used to identify the differentially expressed genes. Alfalfa (Medicago sativa L.) seedlings were exposed to various abiotic stresses such as cold (4°C for 6 h), heat (42°C for 6 h), salt (300 mM for 6 h), drought (withdrawing irrigation for 48 h), copper (500 µM for 6 h), cadmium (500 µM for 6 h), and arsenic (500 µM for 6 h). Primer sets 41 and 93 were differentially expressed and identified as same sequence, which represents a mitochondrial small heat-shock protein encoding gene, MsHsp23. This band was markedly increased or induced in alfalfa under heat, salt, and arsenic stresses. Differential expression of MsHsp23 was further evaluated by Northern blot analysis. Temporal expression analysis showed that mRNA pool was altered as early as 1 h of treatment. Thus, differential accumulation of MsHsp23 under heat, salt, and arsenic stresses suggests its potential involvement in diverse abiotic stress tolerance, and thereby making a target for further molecular analysis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

2

Opis fizyczny

p.807-811,fig.,ref.

Twórcy

autor
  • Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea
autor
  • Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 600-701, Korea
autor
  • Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 600-701, Korea
autor
  • Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 600-701, Korea
autor
  • Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea

Bibliografia

  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193
  • Ahsan N, Donnart T, Nouri MZ, Komatsu S (2010) Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res 9:4189–4204
  • Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med 27:473–479
  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639
  • Bowler C, van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol PlantMol Biol 43:83–116
  • Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R (2008) Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 7:2471–2489
  • Cushman JC, Bohnert H (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124
  • Duncan RR, Carrow RN (2001) Molecular breeding for tolerance to abiotic/edaphic stresses in forage and turf grass. In: Spangenberg G (ed) Molecular breeding of forage crops. Kluwer Academic Publishers, Dordrecht, pp 251–260
  • Foyer CH, Descourvierse P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523
  • Hu Y, Jia W, Wang J, Zhang Y, Yang L, Lin Z (2005) Transgenic tall fescue containing the Agrobacterium tumefaciens ipt gene shows enhanced cold tolerance. Plant Cell Rep 23:705–709
  • Kim YJ, Kwak CI, Gu YY, Hwang IT, Chun JY (2004) Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques 36:424–426
  • Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ, Lee BH (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383
  • Lee S-H, Lee K-W, Kim K-Y, Choi GJ, Yoon SH, Ji HC, Seo S, Lim YC, Ahsan N (2009) Identification of salt-stress induced differentially expressed genes in barley leaves using the annealing control-primer-based GeneFishing technique. Afr J Biotechnol 8:1326–1331
  • Nanjo Y, Maruyama K, Yasue H, Yamaguchi-Shinozaki K, Shinozaki K, Komatsu S (2011) Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Plant Mol Biol. doi:10.1007/s11103-011-9799-4
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
  • Sachs MM, Feeling M, Okimoto R (1980) The anaerobic proteins of maize. Cell 20:761–767
  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393
  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9
  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14
  • Wu YY, Chen QJ, Chen M, Chen J, Wang XC (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na⁺/H⁺ antiporter gene. Plant Sci 169:65–73
  • Yeh CH, Chen YM, Lin CY (2002) Functional regions of rice heat shock protein, Oshsp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiol 168:661–668

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9d598d21-7554-4e7d-af5a-ab865ec86661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.