PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 2 |

Tytuł artykułu

Determinants of the diversity of macrophytes in natural lakes affected by land use in the catchment, water chemistry and morphometry lakes

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Uwarunkowania różnorodności makrofitów w jeziorach naturalnych pod wpływem zagospodarowania terenu zlewni, chemii wody i morfometrii jezior

Języki publikacji

EN

Abstrakty

EN
This study investigated 14 lakes situated in the Borecka Forest, and the analyzed data covered a period of 10 years. The examined water bodies are at low risk of eutrophication. Three factors explaining 79.1% of total variability in the analyzed natural lakes were identified: 1 – morphometry – use of catchment area, 2 – water chemistry, 3 – lake/catchment area. Those factors determined the patterns of macrophyte distribution in the lakes. The variables applied in the CCA ordination plot explained around 59% of the total variability in plant distribution patterns in the examined lakes. Chlorophylla (chla ) was a statistically significant parameter, which explained 12.4% of the total variability in plant distribution patterns in the analyzed lakes. Morphological, physicochemical and catchment area variables have a significant effect on the development of vegetation in the Natura 2000 sites. The results of this study provide the basis for formulating general management guidelines for the investigated lakes and their catchments, which belong to the Natura 2000 ecological network of protected areas. A comprehensive protection plan should be proposed for interdependent habitats. Forest cover in the lakes’ catchment areas should be maintained or expanded, and the share of intensively farmed land should be reduced. Clear cutting in areas adjacent to the lakes should be prevented, and the inflow of biogenic elements, nitrogen and phosphorus (which affects Chla concentrations) should be reduced. The above goals can be achieved, among others, by preserving the existing water relations and species composition of tree stands in the lakes’ catchments areas.
PL

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.401-422,fig.,ref.

Twórcy

  • Chair of Applied Ecology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland

Bibliografia

  • Adamec L., Lev J. 2002. Ecological differences between Utricularia ochroleuca and U. intermedia habitats. Carnivorous Plant Newsletter, 31: 14-18.
  • APHA. 1998. Standard methods for the examination of water and wastewater. 20th edition. American Public Health Association, American Water Works Association and Water Environmental Federation, Washington, DC.
  • Banaś K., Gos K., Szmeja J. 2012. Factors controlling vegetation structure in peatland lakes - Two conceptual models of plant zonation. Aquat. Bot., 96: 42-47.
  • Barko J.W., Gunnison D., Carpenter S.R. 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat. Bot., 41: 41-65.
  • Braun-Blanquet J. 1964. Pflanzensoziologie. Springer, Wien, New York.
  • Canfield D.E.Jr., Langeland K.A., Linda S.B., Haller W. 1985. Relations between water transparency and maximum depth of macrophyte colonization. J. Aquat. Plant Manage., 23: 25-28.
  • Cheruvelil K.S., Soranno P.A. 2008. Relationships between lake macrophyte cover and lake and landscape features. Aquat. Bot., 88: 219-227.
  • CID, 2011. Commission Implementing Decision of 11 July 2011 concerning a site information format for Natura 2000 sites, (notified under document C(2011) 4892) (2011/484/EU). Official Journal of the European Union, L 198/39.
  • Ciecierska H. 2006. Evolution of the status of lakes located in the city of Olsztyn (Masurian Lake District, N-E Poland) by the macrophytoindication method (MPhI). Hydrobiologia, 270: 141-146.
  • Conzonno V., Cirelli A.F. 1995. Dissolved organic matter in Chascomus Pond (Argentina). Factors influencing distribution and dynamics. Hydrobiologia, 297: 55-59.
  • De Haan H. 1992. Impact of environmental changes on the biogeochemistry of aquatic humic substances. Hydrobiologia, 229: 59-71.
  • Ditě D., Navratilova J., Hajek M., Valachovič M., Pukajov D. 2006. Habitat variability and classification of Utricularia communities: comparison of peat depressions in Slovakia and the Třeboň basin. Preslia, 78: 331-343.
  • Dunalska J. 2009. Variability of organic carbon forms in lake ecosystems of varying trophic state. Wyd. UWM, Olsztyn, 110-115. (in Polish)
  • EC 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union, L 206, 22.7.
  • Glińska-Lewczuk K. 2009. Water quality dynamics of oxbow lakes in young glacial landscape of NE Poland in relation to their hydrological connectivity. Ecol. Engin., 35: 25-37.
  • Glińska-Lewczuk K. Burandt P. 2011. Effect of river straightening on the hydrochemical properties of floodplain lakes: Observations from the Łyna and Drwęca Rivers, N Poland. Ecol. Engin., 37: 786-795.
  • Golterman H.L. 1969. Methods for chemical analysis of fresh waters. Blackwell Scientific Publications, Oxford and Edinburgh.
  • Grzybowski M., Szarek J., Skibniewska K., Guziur J. 2010a. Ecological status and phytocoenotic diversity of macrophytes of lake Szeląg Wielki (north-east Poland). Pol. J. Nat. Sc., 25(4): 401-414.
  • Grzybowski M., Szarek J., Skibniewska K., Guziur J. 2010b. Evaluation of diversity of submerged and emergent flora of lake Szeląg Wielki as threatened by a pesticide tomb. Pol. J. Nat. Sc., 25(4): 154-172.
  • Jensen S. 1977. An objective method for sampling the macrophyte vegetation in lakes. Vegetatio, 33: 107-118.
  • Jeppesen E., Søndergaard M., Kanstrup E., Petersen B., Eriksen R.B., Hammershøj M., Mortensen M., Jensen J., Have A. 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia, 275/276: 15-30.
  • Jeppesen E., Jensen J.P., Søndergaard M., Lauridsen T., Landkildehus F. 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Fresh. Biol., 45: 201-218.
  • Kłosowski S. 2006. The relationships between environmental factors and the submerged Potametea associations in lakes of north-eastern Poland. Hydrobiologia, 560(1): 15-29.
  • Kłosowski S., Szańkowski M. 1999. Habitat conditions of nymphaeid associations in Poland. Hydrobiologia, 415: 177-185.
  • Kolada A. 2010. The use of aquatic vegetation in lake assessment: testing the sensitivity of macrophyte metrics to anthropogenic pressures and water quality. Hydrobiologia, 656: 133-147.
  • Krause W. 1981. Characeen als Bioindikatoren für den Gewässerzustand. Limnologica, 13: 399-418.
  • Kufel L., Kufel I. 2002. Chara beds acting as nutrient sinks in shallow lakes - a review. Aquat. Bot., 72: 249-260.
  • Lepš J., Šmilauer P. 2007. Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge.
  • Matuszkiewicz W. 2002. A guide book to identification plant communities in Poland. PWN, Warszawa. (in Polish)
  • Murphy K.J. 2002. Plant communities and plant diversity in softwater lakes of northern Europe. Aquat. Bot., 73: 287-324.
  • Napiórkowska-Krzebietke A., Pasztaleniec A., Hutorowicz A. 2012. Phytoplankton metrics response to the increasing phosphorus and nitrogen gradient in shallow lakes. J. Elem., 17(2): 289-303. DOI: 10.5601/jelem.2012.17.2.11
  • Norlin J.I., Bayley S.E., Ross L.C.M. 2005. Submerged macrophytes, zooplankton and the predominance of low- over high-chlorophyll states in western boreal, shallow-water wetlands. Fresh. Biol., 50: 868-881.
  • Nurminen L. 2003. Macrophyte species composition reflecting water quality changes in adjacent water bodies of lake Hiidenvesi, SW Finland. Ann. Bot. Fennici., 40: 199-208.
  • Nürnberg G. 2001. Eutrophication and trophic state. Lakeline, 29-33.
  • Obolewski K., Glińska-Lewczuk K., Kobus Sz., 2009. An attempt at evaluating the influence of water quality on the qualitative and quantitative structure of epiphytic fauna dwelling on Stratiotes aloides L., a case study on an oxbow lake of the Łyna river. J. Elem., 14(1): 119-135.
  • OECD 1982. Organization for Economic Cooperation and Development. Eutrophication of waters. Monitoring, assessment and control. Final report, OECD cooperative programme on monitoring of inland waters (eutrophication control). Environment Directorate, OECD, Paris.
  • Portielje R., Rijsdijk R.E. 2003. Stochastic modelling of nutrient loading and lake ecosystem response in relation to submerged macrophytes and benthivorous fish. Fresh. Biol., 48: 741-755.
  • Rorslett B. 1987. A gradient spatial niche model for aquatic macrophytes. Aquat. Bot., 29: 63-81.
  • Scheffer M., van Nes E.H. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584: 455-466.
  • Søndergaard M., Johansson L., Lauridsen T., Jorgensen T., Liboriussen L. Jeppesen E. 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Fresh. Biol., 55: 893-908.
  • Spence D.H.N. 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res., 12: 37-125.
  • StatSoft, Inc 2011. Statistica (data analysis software system), version 10. www.statsoft.com.
  • Ter Braak C.J.F., Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, New York.
  • Van den Berg M.S. 1999. Charophyte colonization in shallow lakes: processes, ecological effects and implications for lake management. PhD Thesis. Free University, Amsterdam.
  • Van Donk E., van de Bund W.J. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot., 72: 261-274.
  • Weber H.E., Moravec J., Theurillat J-P. 2000. International code of phytosociological nomenclature. 3rd ed. J. Veget. Sci., 1: 739-768.
  • Wetzel R.G. 1983. Limnology. W.B. Saunders Co., Philadelphia.
  • Wilkinson K.J., Negre J.C. 1997. Coagulation of colloidal material in surface waters: the role of natural organic mater. J. Contamin. Hydrol., 26: 229-243.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9d0830f0-f9fb-4eab-9d87-820eaf5835b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.