PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 58 | 1 |

Tytuł artykułu

Nuclear DNA content and ploidy level of apple cultivars including Polish ones in relation to some morphological traits

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Apple species and cultivars differ in nuclear (2C) DNA content and ploidy level. The majority of these genotypes are diploids, but there are some triploids and a few tetraploids. Nuclear DNA content is a specific feature and its flow cytometric evaluation can be helpful in differentiating taxa. For many apple genotypes – including all the Polish ones, these characteristics are not known. 2C DNA was evaluated in relation to leaf, flower, fruit, pollen grain and stomata sizes as well as to the flowering time for seventy genotypes (including 46 Polish cultivars) gathered in the gene bank of the Research Institute of Horticulture, Skierniewice, Poland. For standard cultivars with the known chromosome number, 2C value was 1.71 pg for diploid cultivar ‘Alwa’ (2n=2x=34), 2.55 pg for triploid ‘Boskoop’ (3x=51), and 3.37 pg for tetraploid genome (4x=68) of mixoploid ‘McIntosh 2x+4x’. In 61 cultivars (including 41 Polish ones), the nuclear DNA content ranged from 1.58 to 1.78 pg indicating their diploid chromosome number. Five cultivars were identified as triploids (‘Bursztówka Polska’, ‘Pagacz’, ‘Rapa Zielona’, ‘Rarytas Śląski’ and ‘Witos’) owing to their nuclear DNA amount ranging between 2.42 and 2.58 pg. Leaf, flower, fruit, stomata and pollen grain sizes were on average significantly larger in triploids. Thus, in 3x plants the mean leaf surface was 49.1 cm², flower diameter – 52.4 mm, fruit weight – 204.7 g, stomata length – 32.1 μm and pollen grain diameter – 33.7 μm, whereas in diploids – 36.0 cm², 46.1 mm, 162.7 g, 28.4 μm and 30.7 μm, respectively. Pollen grain viability was on average significantly higher in diploids (75.6%), compared to triploids (22%). These results confirm that in apple, as in many other plant species, the higher ploidy level of triploids is generally associated with increased sizes of pollen grains, stomata, flowers, fruits and leaves but decreased pollen viability. No clear correlation between ploidy level and flowering time was found. In the case of mixoploid apple genotypes possessing diploid and tetraploid genomes, some phenotype observation is helpful in describing the ploidy level of the histogenic layers, L1 and L2. Small stomata sizes (similar to diploid) indicate diploid L1 and larger leaf sizes, compared to diploid counterparts, show tetraploid L2. The results will be used for breeding, in which it is important to determine maternal and paternal genotypes as well as the direction of the crossing that is of great importance in obtaining seeds and materials for further selection.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.81-93,fig.,ref.

Twórcy

  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

Bibliografia

  • ANONYMOUS 2006. Protocol for distinctness, uniformity and stability tests, Malus domestica Borkh., APPLE (CPVOTP/ 14/2, UPOV Species Code: MALUS_DOM, adopted on 14/03/2006).
  • ANSSOUR S, KRUGEL T, SHARBEL TF, SALUZ HP, BONAVENTURE G, and BALDWIN IT. 2009. Phenotypic, genetic, and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Annals of Botany 103: 1207–1217.
  • ARISUMI T. 1964. Colchicine-induced tetraploid and cytochimeral daylilies. Journal of Heredity 55: 255–261.
  • ARUMUGANATHAN K, and EARLE ED. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208–218.
  • BISOGNIN C, SEEMÜLLER E, CITTERIO S, VELASCO R, GRANDO MS, and JARAUSCH W. 2009. Use of SSR markers to assess sexual vs. apomictic origin and ploidy level of breeding progeny derived from crosses of apple proliferation-resistant Malus sieboldii and its hybrids with Malus × domestica cultivars. Plant Breeding: 507–513.
  • BLANKE MM, HÖFER M, and PRING RJ. 1994. Stomata and structure of tetraploid apple leaves cultured in vitro. Annals of Botany 73: 651–654.
  • CONSIDINE MJ, WAN Y, D’ANTUONO MF, ZHOU Q, HAN M, GAO H, and WANG M. 2012. Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus. PloS One 7: e29449.
  • CRANE MB, and LAWRENCE WJC. 1930. Fertility and vigour of apples in relation to chromosome number. Journal of Genetics 22: 153–163.
  • DICKSON EE, ARUMUGANATHAN K, KRESOVICH S, and DOYLE JJ. 1992. Nuclear DNA content variation within the Rosaceae. American Journal of Botany: 1081–1086.
  • DYKI B, and HABDAS H. 1996. Metoda izolowania epidermy liści pomidora i ogórka dla mikroskopowej oceny rozwoju grzybów patogenicznych. (The method of isolation of epidermis of tomato and cucumber leaves for microscopic investigation of pathogenic fungus development). Acta Agrobotanica 49: 123–129 (in Polish with English abstract).
  • DYKI B. 1978. The use of a fluorescence technique for the investigation of self-sterility in breeding lines of cauliflower. Biuletyn Warzywniczy 21: 267–272 (In Polish with English abstract).
  • DZIALUK A, CHYBICKI I, WELE M, ŚLIWIŃSKA E, and BURSZYK J. 2007. Presence of triploids among oak species. Annals of Botany 99: 959–964.
  • ELRADI T, and UNAL M. 2010. Production of colchicine-induced tetraploids in Vicia villosa Roth. Caryologia 63: 292–303.
  • FLECKINGER J. 1948. Les studies végétatifs des arbres fruitiers en rapport avec les traitements. Pomologie Française (Suppl.): 81–93.
  • GALBRAITH DW, HARKINS KR, MADDOX JM, AYRES NM, SHARMA DP, and FIROOZABADY E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051.
  • GONZÁLEZ-RODRÍGUEZ AM, and GRAJAL-MARTÍN MJ. 2013. Physiological behaviour of mangos with different ploidy levels. Acta Horticulturae 992: 155–158.
  • HÖFER M, and MEISTER A. 2010. Genome size variation in Malus species. Journal of Botany 2010: 1–9.
  • JANICK J, CUMMINS JN, BROWN SK, and HEMMAT M. 1996. Apples. In: Janick J, and Moore JN (eds.). Fruit Breeding: Tree and Tropical Fruits 1, 1–77. John Willey and Sons, NY, USA.
  • JASKANI MJ, and KHAN IA. 2000. Characterisation of interploid hybrids of Kinnow mandarin. Proceedings of International Society of Citriculture 1: 165–166.
  • JASKANI MJ, KWON SW, and KIM DH. 2005. Comparative study on vegetative, reproductive, and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica 145: 259–268.
  • JĘDRZEJCZYK I, and ŚLIWIŃSKA E. 2010. Leaves and seeds as materials for flow cytometric estimation of the genome size of 11 Rosaceae woody species containing DNA-staining inhibitors. Journal of Botany: 1–9.
  • KORBAN SS, WANNARAT W, RAYBURN CM, TATUM TC, and RAYBUR AL. 2009. Genome size and nucleotypic variation in Malus germplasm. Genome 52: 149–155.
  • KRYLOVA VV. 1981. Apple Embryology. Kishinev, Shtiintza, 148 p.
  • LALTANMAWII, and ROYCHOWDHURI S. 2010. Effects of chromosomal variations on morphology and leaf anatomical behaviours in mulberry (Morus sp.). Journal of Crop and Weed 6: 35–39.
  • LESPINASSE Y, and NOITON D. 1986. Contribution to the study of a haploid apple (Malus pumila). Descriptive study and comparison with clones of different levels of ploidy. 1. Vegetative characters: internodes, leaves and stomata. Agronomie 6: 659–664.
  • LYSÁK MA, and DOLEŽEL J. 1998. Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 51: 123–132.
  • NILES WL, and QUESENBERRY KH. 1992. Pollen germination of rhizoma peanut cv. Florigraze. Peanut Science 19: 105–107.
  • PEREIRA-LORENZO S, RAMOS-CABRER AM, and DÍAZ-HERNÁNDEZ MB. 2007. Evaluation of genetic identity and variation of local apple cultivars (Malus × domestica Borkh.) from Spain using microsatellite markers. Genetic Resources and Crop Evolution 54: 405–420.
  • PEREIRA-LORENZO S, RAMOS-CABRER AM, and FISCHER M. 2009. Breeding apple (Malus × domestica Borkh). In: JAIN SM, and Priyadarshan PM (eds.), Breeding Plantation Tree Crops: Temperate Species, 33–81. Springer, New York.
  • PODWYSZYŃSKA M, GABRYSZEWSKA E, JASIŃSKI A, and SOCHACKI D. 2011. Histogenic identification by cytological analysis of colchicine-induced polyploids of Hemerocallis. Acta Horticulturae 886: 245–250.
  • PODWYSZYŃSKA M, GABRYSZEWSKA E, DYKI B, STĘPOWSKA AA, KOWALSKI A, and JASIŃSKI A. 2015. Phenotypic and genome size changes (variation) in synthetic tetraploids of daylily (Hemerocallis) in relation to their diploid counterparts. Euphytica 203: 1–16.
  • RAMANNA MS, and JACOBSEN E. 2003. Relevance of sexual polyploidization for crop improvement – a review. Euphytica 133: 3–8.
  • RAMOS-CABRER AM, DIAZ-HERNANDEZ MB, and PEREIRA-LORENZO S. 2007. Morphology and microsatellites in Spanish apple collections. Journal of Horticultural Science and Biotechnology 82: 257–265.
  • ROGALSKA SM, ACHREM M, and KALINKA A. 2007. Mechanizmy zmian genomowych i zmian w ekspresji genów w mieszańcowych poliploidach roślin. Kosmos 56 (3–4): 421–433.
  • RYBIN VA. 1926. Cytological investigations of the genus Malus (preliminary account). Bulletin of Applied Botany and Plant Breeding (Leningrad) 16: 187–200.
  • SCHMIDT H. 1964 Beiträge zur Züchtung apomiktischer Apfelunterlagen. Zeitschrift für Pflanzenzüchtung 52: 27–102.
  • SEDYSHEVA GA, and GORBACHEVA NG. 2013. Estimation of new tetraploid apple forms as donors of diploid gametes for selection on a polyploidy level. Universal Journal of Plant Science 1(2): 49–54.
  • ŚLIWIŃSKA E. 2008. Zastosowanie cytometrii przepływowej do oznaczania zawartości DNA u roślin (Estimation of DNA content in plants using flow cytometry). Postępy Biologii Komórki 35, Suppl 24: 165–176 (in Polish with English abstract).
  • TATUM TC, STEPANOVIC SS, BIRADAR DP, RAYBURN AL, and KORBAN SS. 2005. Variation in nuclear DNA kontent in Malus species and cultivated apples. Genome 48: 924–930.
  • VANDENHOUT H, ORTIZ R, VUYLSTEKE D, SWENNEN R, and BAI KV. 1995. Effect of ploidy on stomatal and other quantitative traits in plantain and banana hybrids. Euphytica 83: 117–122.
  • VAN HARTEN AM. 2002. Mutation breeding of vegetatively propagated ornamentals. In: Vainstein A. (ed.). Breeding for Ornamentals: Classical and Molecular Approaches, 105-127. Kluwer Academic Publishers, Netherlands.
  • WACHIRA FN.1994. Triploidy in tea (C. sinensis): effects of yield and yield attributes. Journal of Horticultural Science 69: 53–60.
  • WEBSTER AD. 1996. Cherry rootstock evaluation at East Malling. Acta Horticulturae 410: 247–255.
  • ZONNEVELD BJM. 2007. Nuclear DNA content of ploidy chimeras of Hosta Tratt. (Hostaceae) demonstrate three apical layers in all organs, but not in the adventitious root. Plant Systematics and Evolution 269: 29–38.
  • ZONNEVELD BJM. 2009. The systematic value of nuclear genome size for “all” species of Tulipa L. (Liliaceae). Plant Systematics and Evolution 281: 217–245.
  • ZONNEVELD BJM. 2010. The involvement of Narcissus hispanicus Gouan in the origin of Narcissus bujei and of cultivated trumpet daffodils (Amaryllidaceae). Anales del Jardín Botánico de Madrid 67(1): 29–39.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9cf1e092-fd3e-4465-affd-c36db12f348f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.