PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 1 |

Tytuł artykułu

Models of pressure compaction and their application for wheat meal

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Processes of compaction of granular materials were described using selected models. The analysis of their accuracy on the example of wheat was the basis for the discussion on their applicability to the processing of plant-origin materials. Parameters of the model equations for wheat, compressed at 10-18% moisture content were calculated, and the relations between these parameters and wheat moisture were determined. It was found that the analyzed models described the pressure compaction of granular plant material with different accuracy, and were highly dependent on moisture. The study also indicated that the model of Ferrero et al. fits the experimental results well. The parameters of this model reflected very well the physical phenomena which occur during compression.

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.125-130,fig.,ref.

Twórcy

autor
  • Department of Machine Operation in Food Industry, University of Life Sciences in Lublin, Doswiadczalna 44, 20-280 Lublin, Poland
autor
  • Department of Machine Operation in Food Industry, University of Life Sciences in Lublin, Doswiadczalna 44, 20-280 Lublin, Poland
autor
  • Department of Machine Operation in Food Industry, University of Life Sciences in Lublin, Doswiadczalna 44, 20-280 Lublin, Poland

Bibliografia

  • Barnwal P., Kadam D.M., and Singh K.K., 2012. Influence of moisture content on physical properties of maize. Int. Agrophys., 26, 331-334.
  • Chen B., Cheng A.H.-D., and Chou T.-W., 2001. A nonlinear compaction model for fibrous preforms. Composites-Part A: Appl. Sci. Manufacturing, 32(5), 701-707.
  • Chevanan N., Womac A.R., Bitra V.S.P., Igathinathane C., Yang Y.T., Miu P.I., and Sokhansanj S., 2010. Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover. Bioresor. Technol., 101, 207-214.
  • Cocks A.C.F., 2001. Constitutive modelling of powder compaction and sintering. Progress Materials Sci., 46, 201-229.
  • Denny P.J., 2002. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol., 127, 162-172.
  • Faborode M.O. and O'Callaghan J.R., 1986. Theoretical analysis of the compression of fibrous agricultural materials. J. Agric. Eng. Res., 35, 175-191.
  • Feng Y., Grant D.J.W., and Sun C.C., 2007. Influence of crystal structure on the tableting properties of n-alkyl 4-hydroxybenzoateesters (parabens). J. Pharmaceutical Sci., 96(12), 3324-3333.
  • Ferrero A.,Horabik J., and Molenda M., 1991. Density-pressure relationships in compaction of straw. Canadian Agric. Eng., 33, 107-111.
  • Haware R.V., Tho I., and Bauer-Brandl A., 2009. Multivariate analysis of relationships between material properties, process parameters and tablet tensile strength for alpha-lactose monohydrates. European J. Pharmaceutics Biopharmaceutics, 73, 424-431.
  • Heckel R.W., 1961. Density – pressure relationships in powder compaction. Trans. Met. Soc., AIME, 221, 671-675.
  • Kawakita K. and Ludde K.H., 1971. Some considerations of powder compression equations. Powder Technol., 4, 61-68.
  • Laskowski J., Łysiak G., and Skonecki S., 2005. Mechanical properties of granular agro-materials and food powders for industrial practice. Part II. Material properties in grinding and agglomeration. Centre of Excellence for Applied Physics in Sustainable Agriculture AGROPHYSICS. Institute of Agrophysics PAS, Lublin, Poland.
  • Laskowski J. and Skonecki S., 2001. Influence of material's temperature on compression parameters of ground barley grains. Int. Agrophysics, 15, 173-179.
  • Lordi N. G., Cocolas H., and Yamasaki H., 1997. Analytical interpretation of powder compaction during the loading phase. Powder Technol., 90, 173-178.
  • Michrafy A., Ringenbacher D., and Tchoreloff P., 2002. Modelling the compaction behaviour of powders: application to pharmaceutical powders. Powder Technol., 127, 257-266.
  • Molenda M. and Stasiak M., 2002. Determination of elastic constants of cereal grain in uniaxial compression. Int. Agrophysics, 16, 61-65.
  • Molenda M., Stasiak M., Moya M., Ramirez A., Horabik J., and Ayuga F., 2006. Testing mechanical properties of food powders in two laboratories-degree of consistency of results. Int. Agrophysics, 20, 37-45.
  • Obidziński S., 2012. Pelletization process of postproduction plant waste. Int. Agrophys., 26, 279-284.
  • Paneli R. and Filho F.A., 2001. A study of a new phenomenological compacting equation. Powder Technol., 114, 255-261.
  • Rolland S.A., Mosbah P., Gethin D.T., and Lewis R.W., 2012. Lode dependency in the cold die powder compaction process. Powder Technol., 221, 123-136.
  • Sinka I.C.,Cunningham J.C., and Zavaliangos A., 2003. The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker-Prager Cap model. Powder Technol., 133, 33-43.
  • Skonecki S., 2004. Modeling of pressure compaction plant materials (in Polish). Scientific Letters of Agricultural University in Lublin, 279, 1-99.
  • Souriou D., Goeuriot P., Bonnefoy O., Thomas G., and Doré F., 2009. Influence of the formulation of an alumina powder on compaction. Powder Technol., 190, 152-159.
  • Wiącek J. and Molenda M., 2011. Moisture-dependent physical properties of rapeseed - experimental and DEM modeling. Int. Agrophys., 25, 59-65.
  • Wu C.-Y., Ruddy O.M., Bentham A.C., Hancock B.C., Best S.M., and Elliott J.A., 2005. Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technol., 152, 107- 117.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9c90fc5e-d698-4251-9491-31bcab8d4eab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.