PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Temporal variability of water table depth in topohydrosequence of undulating ground moraine in central Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Our paper presents the results of determining temporal variability in the water table depth in topohydrosequence of Retisols/Luvisols and Phaeozems/Gleysols. Assessing temporal variability in the water table was done using geostatistical and statistical methods. The mean annual water table depth in soils occupying higher locations in the relief were determined by precipitation in the given and previous years, but in soils of footslope only by precipitation in a given year. Water table fluctuations were characterized by a clearly visible temporal structure and low values of random variability. The range of time correlation of water table was dependent on the relief and was shorter in soils located in lower parts of the topohydrosequence and longer in wells in the higher part. The contribution of the nugget effect in variance was also dependent on the location of wells on the slope. The obtained values of the fractal dimension (D) show a distinct relationship between D and the location of soil in the topohydrosequence. The values of multivariate analysis indicated that the statistical and geostatistical parameters applied to assess temporal variability of water table depth were dependent on the soil (well) location in the relief.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.2097-2106,fig.,ref.

Twórcy

autor
  • Department of Soil Science and Land Reclamation, Poznan University of Life Sciences, Poznan, Poland
autor
  • Department of Soil Science and Land Reclamation, Poznan University of Life Sciences, Poznan, Poland
  • Department of Soil Science and Land Reclamation, Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • 1. AFLATOONI M., MARDANEH M. Time series analysis of groundwater table fluctuations due to temperature and rainfall change in Shiraz plain. International Journal of Water Resources and Environmental Engineering, 3 (9), 176, 2011.
  • 2. CAI Z., OFTERDINGER U. Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland. Journal of Hydrology, 535, 71, 2016.
  • 3. JAN C.-D., CHEN T.-H., HUANG H.-M. Analysis of rainfall-induced quick groundwater-level response by using a Kernel function. Paddy and Water Environment, 11, 135, 2013.
  • 4. LORENZO-LACRUZ J., GARCIA C., MORÁN-TEJEDA E. Groundwater level responses to precipitation variability in Mediterranean insular aquifers. Journal of Hydrology, 552, 516, 2017.
  • 5. LUTZ A., MINYILA S., SAGA B., DIARRA S., APAMBIRE B., THOMAS J. Fluctuation of Groundwater Levels and Recharge Patterns in Northern Ghana. Climate, 3, 1, 2015.
  • 6. MACHIWAL D., JHA M.K. Characterizing rainfallgroundwater dynamics in a hard-rock aquifer system using time series, geographic information system and geostatistical modelling. Hydrological Processes, 28 (5), 2824-2843, 2014.
  • 7. NOWICKA E. , OLSZEWSKA B., KOPAŃCZYK K., KLIMCZAK H., PŁYWACZYK L. Evaluation of variability of groundwater level using the gradient vector field. Inżynieria Ekologiczna, 39, 105, 2014 [In Polish].
  • 8. SHI X., VAZE J., CROSBIE R. The controlling factors in the daily and monthly groundwater recharge estimation using the water table fluctuation method. In 36th Hydrology and Water Resources Symposium: The art and science of water. Engineers Australia, 725, 2015.
  • 9. ALMEDEIJ J., AL-RUWAIH F. Periodic behavior of groundwater level fluctuations in residential areas. Journal of Hydrology, 328, 677, 2006.
  • 10. FISTIKOGLU O., GUNDUZ O., SIMSEK C. The correlation between statistically downscaled precipitation data and groundwater level Records in North-Western Turkey. Water Resources Management, 30 (15), 5625, 2016.
  • 11. HUMPHREY C.P., HARRIS J., O’DRISCOLL M.A. Evaluation of water table dynamics in relation to soil morphological indicators of seasonal wetness. Universal Journal of Environmental Research & Technology, 2 (4), 286, 2012.
  • 12. KOZŁOWSKI M., KOMISAREK J. Deficiencies of readily plant available water in selected Albeluvisols in central Wielkopolska. Nauka Przyroda Technologie, 8 (1), 4, 2014 [In Polish].
  • 13. LAFARE A.E.A, PEACH D.W., HUGHES A.G. Use of seasonal trend decomposition to understand groundwater behaviour in the Permo-Triassic Sandstone aquifer, Eden Valley, UK. Hydrogeology Journal, 24 (1), 141, 2016.
  • 14. BUOL S.W., SOUTHARD R.J., GRAHAM R.C., MCDANIEL P.A. Soil genesis and classification: Wiley-Blackwell, 2011.
  • 15. FAN Y. Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes. Water Resources Research, 51, 3052, 2015.
  • 16. KOZŁOWSKI M., KOMISAREK J. Temporal variability of selected dissolved components content in groundwater of the catena system of Poznań Lakeland. Rocz. Ochr. Środ., 15, 1965, 2013 [In Polish].
  • 17. KOZŁOWSKI M., KOMISAREK J. Groundwater chemistry and hydrogeochemical processes in a soil catena of the Poznań Lakeland, central Poland. Journal of Elementology, 22 (2), 681, 2017.
  • 18. CALZOLARI C., UNGARO F. Predicting shallow water table depth at regional scale from rainfall and soil data. Journal of Hydrology, 414, 374, 2012.
  • 19. NOWICKA E., OLSZEWSKA B., PŁYWACZYK L., ŁYCZKO W. Changes of ground water levels in the Oder valley below the stage of water fall in Brzeg Dolny in the years 1971-2012. Acta Scientiarum Polonorum. Formatio Circumiectus, 14 (1), 169, 2015a [in Polish].
  • 20. NOWICKA E. DĄBEK P. OLSZEWSKA B. ŻMUDA R. Analysis of spatial changes in groundwater retention for the Oder valley in the Malczyce region. Inżynieria Ekologiczna, 44 (40-46), 2015b [In Polish].
  • 21. TABARI H., NIKBAKHT J., SOME’E B.S. Investigation of groundwater level fluctuations in the north of Iran. Environmental Earth Sciences, 66, 231, 2012.
  • 22. ZIMMERMANN I., FLEIGE H., HORN R. Longtime effects of deep groundwater extraction management on water table levels in surface aquifers. Journal of Soils and Sediments, 17 (1), 133, 2017.
  • 23. TRIKI I., TRABELSI N., HENTATI I., ZAIRI M. Groundwater levels time series sensitivity to pluviometry and air temperature: a geostatistical approach to Sfax region, Tunisia. Environmental Monitoring and Assessment, 186 (3), 1593, 2014.
  • 24. DE BRITO NETO R.T., SANTOS C.A.G., MULLIGAN K., BARBATO L. Spatial and temporal water-level variations in the Texasportion of the Ogallala Aquifer. Natural Hazards, 80, 351, 2015.
  • 25. LITTLE M.A., BLOOMFIELD J.P. Robust evidence for random fractal scaling of groundwater levels in unconfined aquifers. Journal of hydrology, 393 (3), 362, 2010.
  • 26. RAKHSHANDEHROO G.R., AMIRI S.M. Evaluating fractal behavior in groundwater level fluctuations time series. Journal of hydrology, 464, 550, 2012.
  • 27. YU X., GHASEMIZADEH R., PADILLA I.Y., KAELI D., ALSHAWABKEH, A. Patterns of temporal scaling of groundwater level fluctuation. Journal of Hydrology, 536, 485, 2016.
  • 28. ADHIKARY P.P., DASH C.J. Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth. Applied Water Science, 7 (1), 339, 2017.
  • 29. AHMADI S.H., SEDGHAMIZ A. Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental Monitoring and Assessment, 129, 277, 2007.
  • 30. DELBARI, M., MOTLAGH M.B., AMIRI M. Spatiotemporal variability of groundwater depth in the Eghlid aquifer in southern Iran. Earth Sciences Research Journal, 17 (2), 105, 2013.
  • 31. TA′ANY R.A., TAHBOUB A.B, SAFFARINI G.A. Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman-Zarqa basin, Jordan: a case study. Environmental Geology, 57, 525, 2009.
  • 32. RAN Y., LI X., GE Y., LU X., LIAN Y. Optimal selection of groundwater-level monitoring sites in the Zhangye Basin, Northwest China. Journal of Hydrology, 525, 209, 2015.
  • 33. MARCINEK J., KOMISAREK J. Anthropogenic transformations of soils of Poznań Lakeland as a results of intensive agricultural farming. AR. Poznań, 2004 [In Polish].
  • 34. HALL, G.F. Pedology and geomorphology. In: Wilding, L.P., Smeck, N.E., Hall, G.F. (Eds.), Pedogenesis and Soil Taxonomy: I. Concepts and Interactions. Elsevier, Amsterdam, 117, 1983.
  • 35. SOIL SCIENCE DIVISION STAFF. SOIL SURVEY MANUAL. Ditzler C., Scheffe K., Monger H.C. (Eds.). USDA Handbook 18. Government Printing Office, Washington, D.C., 2017.
  • 36. IUSS W. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, 2015.
  • 37. WARRICK A.W., MYERS D.E., NIELSEN D.R. Geostatistical methods applied to soil science. Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, 53, 1986.
  • 38. Tilke C. VARIOWIN-Software for Spatial Data Analysis in 2D: Pannatier, Yvan 1996: Springer Verlag, 91 p., ISBN: 0-387-94679-9, Hardcover DM 78.00. Computational Statistics & Data Analysis, 25, 243, 1997.
  • 39. LOAGUE K., GREEN R.E. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology, 7, 51, 1991.
  • 40. CAMBARDELLA C.A, MOORMAN T.B., PARKIN T.B, KARLEN D.L., NOVAK J.M., TURCO R.F, KONOPKA A.E. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501, 1994.
  • 41. EGHBALL B., HERGERT G.W., LESOING G.W., FERGUSON R.B. Fractal analysis of spatial and temporal variability. Geoderma, 88, 349, 1999.
  • 42. LIANG X., ZHANG Y.K., SCHILLING K. Effect of heterogeneity on spatiotemporal variations of groundwater level in a bounded unconfined aquifer. Stochastic Environmental Research and Risk Assessment, 30 (1), 1, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9c90ead6-60cb-4267-a8b6-0760cd452289
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.