PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 60 | 4 |

Tytuł artykułu

Immunosuppression during Leishmania donovani infection: a potential target for the development of therapy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Dysfunction of T-helper 1 mediated immune responses is a hallmark of the progression of visceral leishmaniosis (VL). Several factors such as altered antigen presentation, and abnormalities in MHC/HLA, antigen processing, and T cell receptor recognition regulate the onset of immunosuppression. Recent investigations on VL patients suggest that susceptibility to visceral leishmaniosis is genetically determined and varies between populations in different geographical locations. Emerging evidence also indicates the importance of the role played by myeloid derived suppressor cells in progressive VL. This study provides a mechanistic view of means to target the signaling mechanisms of immunosuppression to determine potential therapeutic interventions.

Wydawca

-

Rocznik

Tom

60

Numer

4

Opis fizyczny

p.239-245,ref.

Twórcy

autor
  • Department of Microbiology and Immunology, Saint James School of Medicine, Albert Lake Drive, The Quarter, I-2640, Anguilla BWI, Anguilla
  • Department of Microbiology and Immunology, Saint James School of Medicine, Albert Lake Drive, The Quarter, I-2640, Anguilla BWI, Anguilla
  • Department of Biological Sciences, Trident Technical College, 7000 Rivers Avenue, North Charleston, South Carolina 29406, USA
autor
  • Department of Microbiology and Immunology, Saint James School of Medicine, Albert Lake Drive, The Quarter, I-2640, Anguilla BWI, Anguilla

Bibliografia

  • [1] Chang K.P., Dwyer D.M.1976. Multiplication of a human parasite (Leishmania donovani) in phagolysosomes of hamster macrophages in vitro. Science 193: 678-680.
  • [2] Prive C., Descoteaux A. 2000. Leishmania donovani promastigotes evade the activation of mitogenactivated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages. European Journal of Immunology 30: 2235-2244.
  • [3] Bogdan C., Rollinghoff M. 1999. How do protozoan parasites survive inside macrophages? Parasitology Today 15: 22-28.
  • [4] Reiner N.E., Ng W., McMaster W.R. 1987. Parasiteaccessory cell interactions in murine leishmaniasis. II. Leishmania donovani suppresses macrophage expression of class I and class II major histocompatibility complex gene products. Journal of Immunology 138:1926-1932.
  • [5] Pearson R.D., Wheeler D.A., Harrison L.H., Kay H.D. 1983. The immunobiology of leishmaniasis. Reviews of Infectious Diseases 5: 907-927.
  • [6] Garg R., Dube A. 2006. Animal models for vaccine studies for visceral leishmaniasis. Indian Journal of Medical Research 123: 439-454.
  • [7] Handman E. 2001. Leishmaniasis: current status of vaccine development. Clinical Microbiology Reviews 14: 229-243.
  • [8] Nieto C.G., Garcia-Alonso M., Requena J.M., Miron C., Soto M., Alonso C., Navarrete I. 1999. Analysis of the humoral immune response against total and recombinant antigens of Leishmania infantum: correlation with disease progression in canine experimental leishmaniasis. Veterinary Immunology and Immunopathology 67:117-130.
  • [9] Ghosh A., Zhang W.W., Matlashewski G. 2001. Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 20: 59-66.
  • [10] Zhang W.W., Matlashewski G. 1997. Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein, A2. Proceedings of National Academy of Sciences U S A 94: 8807-8811.
  • [11] Guerin P.J., Olliaro P., Sundar S., Boelaert M., Croft S.L., Desjeux P., Wasunna M.K., Bryceson A.D. 2002. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infectious Diseases 2: 494-501.
  • [12] Croft S.L., Seifert K., Yardley V. 2006. Current scenario of drug development for leishmaniasis. Indian Journal of Medical Research 123: 399-410.
  • [13] Ghosh M., Pal C., Ray M., Maitra S., Mandal L., Bandyopadhyay S. 2003. Dendritic cell-based immunotherapy combined with antimony-based chemotherapy cures established murine visceral leishmaniasis. Journal of Immunology 170: 5625-5629.
  • [14] Gamboa-Leon R., Paraguai de Souza E., Borja-Cabrera G.P., Santos F.N., Myashiro L.M., Pinheiro R.O., Dumonteil E., Palatnik-de-Sousa C.B. 2006. Immunotherapy against visceral leishmaniasis with the nucleoside hydrolase-DNA vaccine of Leishmania donovani. Vaccine 24: 4863-4873.
  • [15] Hockertz S., Franke G., Paulini I., Lohmann-Matthes M.L. 1991. Immunotherapy of murine visceral leishmaniasis with murine recombinant interferon-gamma and MTP-PE encapsulated in liposomes. Journal of Interferon Research 11: 177-185.
  • [16] Sundar S., Jha T.K., Thakur C.P., Sinha P.K., Bhattacharya S.K. 2007. Injectable paromomycin for visceral leishmaniasis in India. New England Journal of Medicine 356: 2571-2581.
  • [17] Rafati S., Nakhaee A., Taheri T., Taslimi Y., Darabi H., Eravani D., Sanos S., Kaye P., Taghikhani M., Jamshidi S., Rad M.A. 2005. Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine 23: 3716-3725.
  • [18] Jaffe C.L., Rachamim N., Sarfstein R. 1990. Characterization of two proteins from Leishmania donovani and their use for vaccination against visceral leishmaniasis. Journal of Immunology 144: 699-706.
  • [19] Fujiwara R.T., Vale A.M., Franca da Silva J.C., da Costa R.T., Quetz Jda S., Martins Filho O.A., Reis A.B., Correa Oliveira R., Machado-Coelho G.L., Bueno L.L., Bethony J.M., Frank G., Nascimento E., Genaro O., Mayrink W., Reed S., Campos-Neto A. 2005. Immunogenicity in dogs of three recombinant antigens (TSA, LeIF and LmSTI1) potential vaccine candidates for canine visceral leishmaniasis. Veterinary Research 36: 827-838.
  • [20] Dunan S., Frommel D., Monjour L., Ogunkolade B.W., Cruz A., Quilici M. 1989. Vaccination trial against canine visceral leishmaniasis. Phocean Veterinary Study Group on Visceral Leishmaniasis. Parasite Immunology 11: 397-402.
  • [21] Khalil E.A., El Hassan A.M., Zijlstra E.E., Mukhtar M.M., Ghalib H.W., Musa B., Ibrahim M.E., Kamil A.A., Elsheikh M., Babiker A., Modabber F. 2000 Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356:1565-1569.
  • [22] Mayrink W., Genaro O., Silva J.C., da Costa R.T., Tafuri W.L., Toledo V.P., da Silva A.R., Reis A.B., Williams P., da Costa P.W. 1996. Phase I and II open clinical trials of a vaccine against Leishmania chagasi infections in dogs. Memorias do Instituto Oswaldo Cruz 91: 695-697.
  • [23] Borja-Cabrera G.P., Cruz Mendes A., Paraguai de Souza E., Hashimoto Okada L.Y., de ATFA, Kawasaki J.K., Costa A.C., Reis A.B., Genaro O., Batista L.M., Palatnik M., Palatnik-de-Sousa C.B. 2004. Effective immunotherapy against canine visceral leishmaniasis with the FML-vaccine. Vaccine 22: 2234-2243.
  • [24] da Silva V.O., Borja-Cabrera G.P., Correia Pontes N.N., de Souza E.P., Luz K.G., Palatnik M, Palatnik de Sousa C.B. 2000. A phase III trial of efficacy of the FML-vaccine against canine kala-azar in an endemic area of Brazil (Sao Goncalo do Amaranto, RN). Vaccine 19:1082-1092.
  • [25] Mauel J. 2002. Vaccination against Leishmania infections. Current Drug Targets, Immune, Endocrine and Metabolic Disorder 2: 201-226.
  • [26] Chang K.P. 1981. Leishmania donovani-macrophage binding mediated by surface glycoproteins/antigens: characterization in vitro by a radioisotopic assay. Molecular Biochemical and Parasitology 4: 67-76.
  • [27] Wilson M.E., Pearson R.D. 1988. Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infection and Immunity 56: 363-369.
  • [28] Russell D.G., Wright S.D. 1988. Complement receptor type 3 (CR3) binds to an Arg-Gly-Aspcontaining region of the major surface glycoprotein, gp63, of Leishmania promastigotes. Journal of Experimental Medicine 168: 279-292.
  • [29] Lepay D.A., Nogueira N., Cohn Z.. 1983. Surface antigens of Leishmania donovani promastigotes. Journal of Experimental Medicine 157:1562-1572.
  • [30] Chakrabarty R., Mukherjee S., Lu H.G., McGwire B.S., Chang K.P., Basu M.K. 1996. Kinetics of entry of virulent and avirulent strains of Leishmania donovani into macrophages: a possible role of virulence molecules (gp63 and LPG). Journal of Parasitology 82: 632-635.
  • [31] Brittingham A., Morrison C.J., McMaster W.R., McGwire B.S., Chang K.P., Mosser D.M. 1995. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. Journal of Immunology 155: 3102-3111.
  • [32] Ramamoorthy R., Donelson J.E., Paetz K.E., Maybodi M., Roberts S.C., Wilson M.E. 1992. Three distinct RNAs for the surface protease gp63 are differentially expressed during development of Leishmania donovani chagasi promastigotes to an infectious form. Journal of Biological Chemistry 267:1888-1895.
  • [33] McConville M.J., Blackwell J.M. 1991. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. Journal of Biological Chemistry 266:15170-15179.
  • [34] Petit M.C., Orlewski P., Tsikaris V., Sakarellos-Daitsiotis M., Sakarellos C., Tzinia A., Konidou G., Soteriadou K.P., Marraud M., Cung M.T. 1998. Solution structures of the fibronectin-like Leishmania gp63 SRYD-containing sequence in the free and antibody-bound states – transferred NOE and molecular dynamics studies. European Journal of Biochemistry 253:184-193.
  • [35] Ghosh S., Bhattacharyya S., Sirkar M., Sa G.S., Das T., Majumdar D., Roy S., Majumdar S. 2002. Leishma nia donovani suppresses activated protein 1 and NF-kappaB activation in host macrophages via ceramide generation: involvement of extracellular signal-regulated kinase. Infection and Immunity 70: 6828-6838.
  • [36] Dey R., Majumder N., Bhattacharjee S., Majumdar S.B., Banerjee R., Ganguly S., Das P., Majumdar S. 2007. Leishmania donovani-induced ceramide as the key mediator of Akt dephosphorylation in murine macrophages: role of protein kinase Czeta and phosphatase. Infection and Immunity 75: 2136-2142.
  • [37] Zhang O., Wilson M.C., Xu W., Hsu F.F., Turk J., Kuhlmann F.M., Wang Y., Soong L., Key P., Beverley S.M., Zhang K. 2009. Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathogens 5: e1000692.
  • [38] Knapp K.M., English B.K. 2000. Ceramidemediated stimulation of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF) accumulation in murine macrophages requires tyrosine kinase activity. Journal of Leukocyte Biology 67: 735-741.
  • [39] Saha B., Das G., Vohra H., Ganguly N.K., Mishra G.C. 1995. Macrophage-T cell interaction in experimental visceral leishmaniasis: failure to express costimulatory molecules on Leishmania-infected macrophages and its implication in the suppression of cell-mediated immunity. European Journal of Immunology 25: 2492-2498.
  • [40] Haldar J.P., Ghose S., Saha K.C., Ghose A.C. 1983. Cell-mediated immune response in Indian kala-azar and post-kala-azar dermal leishmaniasis. Infection and Immunity 42:702-707.
  • [41] Murray H.W., Masur H., Keithly J.S. 1982. Cellmediated immune response in experimental visceral leishmaniasis. I. Correlation between resistance to Leishmania donovani and lymphokine-generating capacity. Journal of Immunology 129: 344-350.
  • [42] Reed S.G., Badaro R., Masur H., Carvalho E.M., Lorenco R., Lisboa A., Teixeira R., Johnson W.D., Jr., Jones T.C. 1986. Selection of a skin test antigen for American visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene 35: 79-85.
  • [43] Sacks D., Sher A. 2002. Evasion of innate immunity by parasitic protozoa. Nature Immunology 3: 1041-1047.
  • [44] Carvalho E.M., Bacellar O., Barral A., Badaro R., Johnson W.D., Jr. 1989. Antigen-specific immunosuppression in visceral leishmaniasis is cell mediated. Journal of Clinical Investigation 83: 860-864.
  • [45] Gifawesen C., Farrell J.P. 1989. Comparison of Tcell responses in self-limiting versus progressive visceral Leishmania donovani infections in golden hamsters. Infection and Immunity 57: 3091-3096.
  • [46] Dasgupta S., Mookerjee A., Chowdhury S.K., Ghose A.C. 1999. Immunosuppression in hamsters with progressive visceral leishmaniasis: an evaluation of the role of nitric oxide toward impairment of the lymphoproliferative response. Parasitology Research 85: 594-596.
  • [47] Reed S.G., Larson C.L., Speer C.A. 1977. Suppression of cell-mediated immunity in experi mental Chagas’ disease. Zeitschrift für Parasiten kunde 52: 11-17.
  • [48] Murphy M.L., Wille U, Villegas E.N., Hunter C.A., Farrell J.P. 2001. IL-10 mediates susceptibility to Leishmania donovani infection. European Journal of Immunology 31: 2848-2856.
  • [49] Carvalho E.M., Badaro R., Reed S.G., Jones T.C., Johnson W.D., Jr. 1985. Absence of gamma interferon and interleukin 2 production during active visceral leishmaniasis. Journal of Clinical Investigation 76: 2066-2069.
  • [50] Neogy A.B., Nandy A., Ghosh Dastidar B., Chowdhury A.B. 1988. Modulation of the cellmediated immune response in kala-azar and postkala-azar dermal leishmaniasis in relation to chemotherapy. Annals of Tropical Medicine and Parasitology 82: 27-34.
  • [51] Ulczak O.M., Blackwell J.M. 1983. Immunoregulation of genetically controlled acquired responses to Leishmania donovani infection in mice: the effects of parasite dose, cyclophosphamide and sublethal irradiation. Parasite Immunology 5: 449-463.
  • [52] Nickol A.D., Bonventre P.F. 1985. Visceral leishmaniasis in congenic mice of susceptible and resistant phenotypes: T-lymphocyte-mediated immun osuppression. Infection and Immunity 50: 169-174.
  • [53] Goto H., Lindoso J.A. 2004. Immunity and immunosuppression in experimental visceral leishmaniasis. Brazilian Journal of Medical and Biological Research 37: 615-623.
  • [54] Melby P.C., Chandrasekar B., Zhao W., Coe J.E. 2001. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. Journal of Immunology 166:1912-1920.
  • [55] Fakiola M., Strange A., Cordell H.J., Miller E.N., Pirinen M. et al. 2013 Common variants in the HLADRB1-HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Nature Genetics 45: 208-213.
  • [56] Bucheton B., Abel L., El-Safi S., Kheir M.M., Pavek S., Lemainque A., Dessein A.J. 2003. A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar. American Journal of Human Genetics 73: 1052-1060.
  • [57] Miller E.N., Fadl M., Mohamed H.S., Elzein A., Jamieson S.E., Cordell H.J., Peacock C.S., Fakiola M., Raju M., Khalil E.A., Elhassan A., Musa A.M., Ibrahim M.E., Blackwell J.M. 2007. Y chromosome lineage- and village-specific genes on chromosomes 1p22 and 6q27 control visceral leishmaniasis in Sudan. PLoS Genet 3:e71.
  • [58] Murray H.W., Carriero S.M., Donelly D.M. 1986. Presence of a macrophage-mediated suppressor cell mechanism during cell-mediated immune response in experimental visceral leishmaniasis. Infection and Immunity 54: 487-493.
  • [59] Sacks D.L., Lal S.L., Shrivastava S.N., Blackwell J., Neva F.A. 1987. An analysis of T cell responsiveness in Indian kala-azar. Journal of Immunology 138: 908-913.
  • [60] Bacellar O., D’Oliveira A., Jr., Jeronimo S., Carvalho E.M. 2000. IL-10 and IL-12 are the main regulatory cytokines in visceral leishmaniasis. Cytokine 12: 1228-1231.
  • [61] Blackwell J.M., Ulczak O.M. 1984. Immuno-regulation of genetically controlled acquired responses to Leishmania donovani infection in mice: demonstration and characterization of suppressor T cells in noncure mice. Infection and Immunity 44: 97-102.
  • [62] Gabrilovich D.I., Nagaraj S. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nature Review of Immunology 9:162-174.
  • [63] Mazzoni A., Bronte V., Visintin A., Spitzer J.H., Apolloni E., Serafini P., Zanovello P., Segal D.M. 2002. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. Journal of Immunology 168: 689-695.
  • [64] Modolell M., Choi B.S., Ryan R.O., Hancock M., Titus R.G., Abebe T., Hailu A., Muller I., Rogers M.E., Bangham C.R., Munder M., Kropf P. 2009. Local suppression of T cell responses by arginaseinduced L-arginine depletion in nonhealing leishmaniasis. PLoS Neglected Tropical Diseases 3: e480.
  • [65] Abebe T., Hailu A., Woldeyes M., Mekonen W., Bilcha K., Cloke T., Fry L., Seich A.l., Basatena N.K., Corware K., Modolell M., Munder M, Tacchini-Cottier F., Muller I., Kropf P. 2012. Local increase of arginase activity in lesions of patients with cutaneous leishmaniasis in Ethiopia. PLoS Neglected Tropical Diseases 6: e1684.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9c1409eb-753c-4585-9530-b23d77518f53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.