PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 09 |

Tytuł artykułu

Photosynthetic apparatus protection and drought effect mitigation in açaí palm seedlings by rhizobacteria

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Water deficit sensitivity decreases the açaí palm seedling production in nurseries. The goal of this study was to evaluate gas exchange, chlorophyll a fluorescence, lipid peroxidation and antioxidant enzymes in açaí palm seedlings inoculated with rhizobacteria. Four rhizobacteria isolates (UFRA-58, UFRA-92, BRM-32111 and BRM-32113) and one control (without inoculation) were inoculated on açaí palm seedlings at field capacity (FC) 100%, 75%, 50% and 25%. Water deficit reduced photosynthetic performance in all açaí palm seedlings, but to a lesser extent in seedlings inoculated with rhizobacteria. At 75% FC, all inoculated seedlings maintained greater water potential, gas exchange and chlorophyll a fluorescence and, at 50% FC, only the seedlings inoculated with BRM-32111 and BRM-32113 were able to maintain these advantages in relation to the control. In 25% FC, no effect was observed for rhizobacteria inoculation. At 50% FC, the increase in catalase (CAT) enzymatic activity was induced by UFRA-58. The ascorbate peroxidase (APX) enzymatic activity was greater for UFRA-92, whereas superoxide dismutase (SOD) enzymatic activity was higher only for BRM-32113. The malonic aldehyde (MDA) content was greater only for control. Rhizobacterial inoculation in açaí palm seedlings attenuates the water deficit effects by photosynthetic performance maintenance and antioxidant enzymes activation, contributing to decrease the seedling mortality rate in nurseries.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

09

Opis fizyczny

Article 163 [12p.], fig.,ref.

Twórcy

  • Plant Protection Laboratory (LPP), Institute of Agricultural Sciences, Federal Rural University of Amazonia (UFRA), Belem, PA 66077‑830, Brazil
  • Education, Agriculture and Environment Institute, Federal University of Amazonas (UFAM), Humaita, AM 69800‑000, Brazil
autor
  • Institute of Agricultural Sciences, Federal Rural University of Amazonia (UFRA), Belem, PA 66077‑830, Brazil
autor
  • Plant Protection Laboratory (LPP), Institute of Agricultural Sciences, Federal Rural University of Amazonia (UFRA), Belem, PA 66077‑830, Brazil
autor
  • Plant Protection Laboratory (LPP), Institute of Agricultural Sciences, Federal Rural University of Amazonia (UFRA), Belem, PA 66077‑830, Brazil

Bibliografia

  • Alscher R, Erturk N (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341
  • Amir HG, Shamsuddin ZH, Halimi MS et al (2005) Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions. Commun Soil Sci Plant Anal 36:2059–2066. https://doi.org/10.1080/00103620500194270
  • Astriani M, Mubarik N, Tjahjoleksono A (2016) Selection of bacteria producing indole-3-Acetic acid and its application on oil palm seedlings (Elaeis guineensis Jacq.). Malays J Microbiol 12:147–154. https://doi.org/10.21161/mjm.74615
  • Baisak R, Rana D, Acharya PBB, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35(3):489–495
  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  • Barbosa M, Lobato A, Pereira T et al (2017) Antioxidant system is insufficient to prevent cell damages in Euterpe oleracea exposed to water deficit. Emir J Food Agric 29:206. https://doi.org/10.9755/ejfa.2016-09-1217
  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Bresson J, Varoquaux F, Bontpart T et al (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569. https://doi.org/10.1111/nph.12383
  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x
  • Calbo MER, De Moraes JAPV (2000) Efeitos da deficiência de água em plantas de Euterpe oleracea (açaí). Rev Bras Bot 23:225–230. https://doi.org/10.1590/S0100-84042000000300001
  • Campostrini E (2001) Fluorescência da clorofila a: considerações teóricas e aplicações práticas. uenf.br. UFNF, Rio de Janeiro
  • Cattelan AJ (1999) Métodos Qualitativos para Determinação de Características Bioquímicas e Fisiológicas Associadas com Bactérias Promotoras do Crescimento Vegetal. Embrapa Soja 139:36
  • Döbereiner J, Day J (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Proceedings of the 1st international symposium on nitrogen fixation. Washington State University Press Pullman, pp 518–538
  • Doni F, Isahak A, Che Mohd Zain CR, Wan Yusoff WM (2014) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4:45. https://doi.org/10.1186/s13568-014-0045-8
  • Fan X, Hu H, Huang G et al (2015) Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize. Plant Soil 390:337–349. https://doi.org/10.1007/s11104-015-2410-z
  • Filippi MCC, da Silva GB, Silva-Lobo VL et al (2011) Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biol Control 58:160–166. https://doi.org/10.1016/j.biocontrol.2011.04.016
  • Flexas J, Barbour MM, Brendel O et al (2012) Mesophyll diffusion conductance to CO₂: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84. https://doi.org/10.1016/j.plantsci.2012.05.009
  • Forni C, Duca D, Glick BR (2016) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 1:5–9. https://doi.org/10.1007/s11104-016-3007-x
  • Gagné-Bourque F, Bertrand A, Claessens A et al (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:1–16. https://doi.org/10.3389/fpls.2016.00584
  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I Occurrence in higher plants. Plant Physiol 59:309–314
  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Amelioration of drought tolerance in wheat by the interaction of plant growth promoting rhizobacteria. Plant Biol 18:992–1000. https://doi.org/10.1111/plb.12505
  • Gou W, Tian L, Ruan Z et al (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak J Bot 47:581–586
  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455
  • Kado CI, Heskett MG (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969. https://doi.org/10.1094/Phyto-60-969
  • Kasim WA, Osman ME, Omar MN et al (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130. https://doi.org/10.1007/s00344-012-9283-7
  • Klar AE, Villa Nova NA, Marcos ZZ, Cervéllini A (1966) Determinação da umidade do solo pelo método das pesagens. An da Esc Super Agric Luiz Queiroz 23:15–30. https://doi.org/10.1590/S0071-12761966000100003
  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. https://doi.org/10.1146/annurev.pp.42.060191.001525
  • Li W, Zhang S, Shan L (2007) Responsibility of non-stomatal limitations for the reduction of photosynthesis-response of photosynthesis and antioxidant enzyme characteristics in alfalfa (Medicago sativa L.) seedlings to water stress and rehydration. Front Agric China 1:255–264. https://doi.org/10.1007/s11703-007-0044-5
  • Malke H (1991) Z. Klement, K. Rudolph and D. C. Sands (Editors), Methods in Phytobacteriology. XIV + 568 S., 135 Abb., 62 Tab. Budapest 1990. Akadémiai Kaidó. Ft 1520.0 ISBN: 963-05-4955-7. J Basic Microbiol 31:148. https://doi.org/10.1002/jobm.3620310214
  • Martins BEM (2015) Caracterização morfológica, bioquímica e molecular de isolados bacterianos antagonistas a Magnaporthe oryzae. Diss Univ Fed, Goiás, p 80f
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668. https://doi.org/10.1093/jexbot/51.345.659
  • Medrano H, Escalona JM, Bota J et al (2002) Regulation of photosynthesis of C₃ plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905. https://doi.org/10.1093/aob/mcf079
  • Mizuno M, Kamei M, Tsuchida H (1998) Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage. IUBMB Life 44:717–726. https://doi.org/10.1080/15216549800201762
  • Mohammadi H, Dashi R, Farzaneh M et al (2016) Effects of beneficial root pseudomonas on morphological, physiological, and phytochemical characteristics of Satureja hortensis (Lamiaceae) under water stress. Brazilian J Bot 1:5–9. https://doi.org/10.1007/s40415-016-0319-2
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Nascente AS, de Filippi MCC, Lanna AC et al (2016) Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environ Sci Pollut Res 24:2956–2965. https://doi.org/10.1007/s11356-016-8013-2
  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.02223
  • Oliveira MDSP, Neto JTDF (2004) Cultivar BRS-Pará: açaizeiro para Produção de Frutos em Terra Firme. Embrapa Comun Técnico 114:1–3
  • Oliveira LC, De Oliveira MDSP, Davide LC, Torres GA (2016) Karyotype and genome size in Euterpe Mart. (Arecaceae) species. Comp Cytogenet 10:17–25. https://doi.org/10.3897/CompCytogen.v10i1.5522
  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth Res 54:135–142. https://doi.org/10.1023/A:1005936823310
  • Pinheiro HA, Silva JV, Endres L et al (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Ind Crops Prod 27:385–392. https://doi.org/10.1016/j.indcrop.2007.10.003
  • Rolli E, Marasco R, Vigani G et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331. https://doi.org/10.1111/1462-2920.12439
  • Rufino M, Pérez-Jiménez J, Arranz s (2011) Açaí (Euterpe oleraceae) ‘BRS Pará’: a tropical fruit source of antioxidant dietary fiber and high antioxidant capacity oil. Food Res Int 44:2100–2106. https://doi.org/10.1016/j.foodres.2010.09.011
  • Samaniego-Gámez BY, Garruña R, Tun-Suárez JM et al (2016) Bacillus spp. inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chil J Agric Res 76:409–416. https://doi.org/10.4067/S0718-58392016000400003
  • Saravanakumar D, Kavino M, Raguchander T et al (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209. https://doi.org/10.1007/s11738-010-0539-1
  • Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of photosynthesis. Springer, Berlin Heidelberg, pp 49–70
  • Silva Cravo M, Viégas IJM, Brasil EC (2007) Recomendações de adubação e calagem para o Estado do Pará. EMBRAPA Amazonia Oriental, Bélem
  • Silva PA, Cosme VS, Rodrigues KCB et al (2017) Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta Physiol Plant 39:58. https://doi.org/10.1007/s11738-017-2354-4
  • Silvestre WVD, Pinheiro HA, Souza RORDM, Palheta LF (2016) Revista Brasileira de Engenharia Agrícola e Ambiental Morphological and physiological responses of açaí seedlings subjected to different watering regimes Respostas morfológicas e fisiológicas de mudas de açaizeiros submetidas à diferentes regimes hídricos. 364–371
  • Silvestre WVD, Silva PA, Palheta LF et al (2017) Differential tolerance to water deficit in two açaí (Euterpe oleracea Mart.) plant materials. Acta Physiol Plant 39:4. https://doi.org/10.1007/s11738-016-2301-9
  • Stefan M, Munteanu N, Stoleru V (2013) Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Rom Biotechnol Lett 18:8132–8143
  • Steffen KL (1991) Avoidance of photooxidative stress: balancing energy flux within the chloroplast. Curr Top plant Physiol 6:119–130
  • Sylvester-Bradley R, Asakawa N, La TS et al (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amaz 12:15–22
  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780
  • Timmusk S, Abd El-Daim IA, Copolovici L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments Enhanced biomass production and reduced emissions of stress volatiles. PLoS One. https://doi.org/10.1371/journal.pone.0096086
  • Wang CJ, Yang W, Wang C et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:1–10. https://doi.org/10.1371/journal.pone.0052565
  • Wang P, Zhang C, Guo M et al (2014a) Complete genome sequence of Bacillus thuringiensis YBT-1518, a typical strain with high toxicity to nematodes. J Biotechnol 171:1–2. https://doi.org/10.1016/j.jbiotec.2013.11.023
  • Wang S, Ouyang L, Ju X et al (2014b) Survey of plant drought-resistance promoting bacteria from populus euphratica tree living in arid area. Indian J Microbiol 54:419–426. https://doi.org/10.1007/s12088-014-0479-3
  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agric Res 56:715–721. https://doi.org/10.1071/AR04082
  • Zhang K, Liu Z, Shan X et al (2017) Physiological properties and chlorophyll biosynthesis in a Pak-choi (Brassica rapa L. ssp. chinensis) yellow leaf mutant pylm. Acta Physiol Plant 39:22. https://doi.org/10.1007/s11738-016-2321-5
  • Zhou C, Ma Z, Zhu L et al (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17:976. https://doi.org/10.3390/ijms17060976

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9be7a013-dbcc-46cb-a65b-9c4267bb0d5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.