PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 3 |

Tytuł artykułu

Optimizing the shape of a compression-ignition engine conbustion chamber by using simulation tests

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Modern solutions used in compression-ignition internal combustion engines are quite similar to each other. The use of high-pressure, direct fuel injection results in high combustion rates with controlled exhaust emissions. One of the combustion system quality criteria is to obtain adequately high thermodynamic indicators of the combustion process, which are obtained through, among others, the right combustion chamber geometry. Its shape influences the fuel atomization process, turbulence of fuel dose, evaporation and the combustion process. Optimizing the combustion chamber shape is one of the decisive factors proving the correct execution of the combustion process. This article presents the methodology of choosing the combustion chamber shape (changes of three selected combustion chamber dimensions) by using the optimization methods. Generating multidimensional data while maintaining the correlation structure was performed by using the Latin hypercube method. Chamber optimization was carried out by using the Nelder-Mead method. The combustion chamber shape was optimized for three engine load values (determined by the average indicated pressure) at selected engine operating conditions. The presented method of engine combustion chamber optimization can be used in low and high speed diesel propulsion engines (especially in maritime transport applications)

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.138-146,fig.,ref.

Twórcy

autor
  • Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
autor
  • Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland

Bibliografia

  • 1. AVL FIRE, ESE Diesel, Emission Module, Version 2017.
  • 2. Channappagoudra M., Ramesh K., Manavendra G.: Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend. Renewable Energy, 133, 2019, pp. 216–232.
  • 3. Gafoor A.C.P., Gupta R.: Numerical investigation of piston bowl geometry and swirl ratio on emission from diesel engines. Energy Conversion and Management, 101, 2015, pp. 541–551.
  • 4. Heywood J.: Internal Combustion Engine Fundamentals. McGraw-Hill Book Company, New York 1988.
  • 5. Khan S., Panua R., Bose P.K.: Combined effects of piston bowl geometry and spray pattern on mixing, combustion and emissions of a diesel engine: A numerical approach. Fuel, 225, 2018, pp. 203–217.
  • 6. Maehara N., Shimoda Y.: Application of the genetic algorithm and downhill simplex methods (Nelder–Mead methods) in the search for the optimum chiller configuration. Applied Thermal Engineering, 61(2), 2013, pp. 433–442.
  • 7. Marine engine programme. MAN energy solution. 2nd edition 2018. www.marine.man-es.com
  • 8. Naber J.D., Reitz R.D. Modeling engine spray/wall impingement. SAE Technical Paper 880107.
  • 9. Navid A., Khalilarya S., Abbasi M.: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process. Fuel, 228, 2018, pp. 349–367.
  • 10. Pielecha I., Pielecha J., Skowron M. et al.: The influence of diesel oil improvers on indices of atomisation and combustion in high-efficiency engines. Polish Maritime Research, 3(95), vol. 24, 2017, pp. 99–105.
  • 11. Pielecha I., Wisłocki K., Cieślik W. et al.: Application of IMEP and MBF50 indexes for controlling combustion in dual-fuel reciprocating engine. Applied Thermal Engineering, 132, 2018, pp. 188–195.
  • 12. Shields M.D., Zhang J.: The generalization of Latin hypercube sampling, Reliability Engineering & System Safety, 148, 2016, pp. 96–108.
  • 13. Taghavifar H.: Towards multiobjective Nelder-Mead optimization of a HSDI diesel engine: Application of Latin hypercube design-explorer with SVM modeling approach. Energy Conversion and Management, 143, 2017, pp. 150–161.
  • 14. Vedharaj S., Vallinayagam R., Yang W.M. et al.: Optimization of combustion bowl geometry for the operation of kapok biodiesel – Diesel blends in a stationary diesel engine. Fuel, 139, 2015, 561–567.
  • 15. Wärtsilä Solutions for Marine and Oil & Gas Markets. Wartsila 2018, wartsila.com

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9b74f762-6008-4503-bc73-754ff2106d05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.