PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 21 | 4 |

Tytuł artykułu

The question of ergogenic potential of the Paleolithic diet

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Paleolithic diet is a modern nutritional diet developed on the basis of human and primate evolution. There is a growing body of evidence suggesting the Paleolithic diet may have beneficial effects on risk factors of cardiovascular diseases and type 2 diabetes. Some authors claim the modern model of Paleolithic diet has an ergogenic potential (i.e. it may enhance physical performance), especially with regard to its high content of branched-chain amino acids, alkalizing properties as well as limited amount of antinutrients, and the appropriate omega-6/omega-3 fatty acids ratio. Gaining the benefits regarded as unique for the Paleolithic diet may not always be associated with complete exclusion of cereals, milk, dairy products and legumes. The diet is particularly recommended for endurance athletes and athletes for whom maintaining low adiposity is priority. Moreover, periodical adherence to the Paleolithic diet may enhance the flexibility of utilization of energy substrates in endurance sports. More extensive research on physically active individuals may provide more solid evidence on the ergogenic potential of the Paleolithic diet.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

4

Opis fizyczny

p.213-219,ref.

Twórcy

autor
  • Department of Dietetics, Warsaw University of Life Sciences, Warsaw, Poland
  • Department of Dietetics, Warsaw University of Life Sciences, Warsaw, Poland

Bibliografia

  • 1. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O'Keefe JH, Brand-Miller J. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005; 81(2): 341-354.
  • 2. Lindeberg S. Paleolithic diets as a model for prevention and treatment of Western disease. Am J Hum Biol. 2012; 24(2): 110-115.
  • 3. Eaton SB. The ancestral human diet: what was it and should it be a paradigm for contemporary nutrition? Proc Nutr Soc. 2006; 65(1): 1-6.
  • 4. Konner M, Eaton SB. Paleolithic nutrition: twenty-five years later. Nutr Clin Pract. 2010; 25(6): 594-602.
  • 5. Jonsson T, Granfeldt Y, Ahren B, Branell UC, Palsson G, Hansson A, Soderstrom M, Lindeberg S. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol. 2009; 16; 8: 35.
  • 6. Lindeberg S, Jonsson T, Granfeldt Y, Borgstrand E, Soffman J, Sjostrom K, Ahren B. A Palaeolithic diet improves glucose tolerance more than a Mediterranean¬like diet in individuals with ischaemic heart disease. Diabetologia. 2007; 50(9): 1795-1807.
  • 7. Jonsson T, Ahren B, Pacini G, Sundler F, Wierup N, Steen S, Sjoberg T, Ugander M, Frostegard J, Goransson L, Lindeberg S. A Paleolithic diet confers higher insulin sensitivity, lower C-reactive protein and lower blood pressure than a cereal-based diet in domestic pigs. Nutr Metab (Lond). 2006; 2; 3: 39.
  • 8. Osterdahl M, Kocturk T, Koochek A, Wandell PE. Effects of a short-term intervention with a paleolithic diet in healthy volunteers. Eur J Clin Nutr. 2008; 62(5): 682-685.
  • 9. Frassetto LA, Schloetter M, Mietus-Synder M, Morris RC Jr, Sebastian A. Metabolic and physiologic improvements from consuming a paleolithic, hunter- gatherer type diet. Eur J Clin Nutr. 2009; 63(8): 947-955.
  • 10. Mellberg C, Sandberg S, Ryberg M, Eriksson M, Brage S, Larsson C, Olsson T, Lindahl B. Long-term effects of a Palaeolithic-type diet in obese postmenopausal women: a 2-year randomized trial. Eur J Clin Nutr. 2014; 68(3): 350-357.
  • 11. Jönsson T, Granfeldt Y, Erlanson-Albertsson C, Ahren B, Lindeberg S. A paleolithic diet is more satiating per calorie than a Mediterranean-like diet in individuals with ischemic heart disease. Nutr Metab (Lond). 2010; 30; 7: 85.
  • 12. Carrera-Bastos P, Fontes-Villalba M, O'Keefe JH, Lindeberg S, Cordain L. The western diet and lifestyle and diseases of civilization. Research Reports in Clinical Cardiology. 2011; 2: 15-35.
  • 13. Eaton SB, Eaton SB. An evolutionary perspective on human physical activity: implications for health. Comp Biochem Physiol A Mol Integr Physiol. 2003; 136(1): 153-159.
  • 14. Lindeberg S, Söderberg S, Ahren B, Olsson T. Large differences in serum leptin levels between nonwesternized and westernized populations: the Kitava study. J Intern Med. 2001; 249(6): 553-558.
  • 15. Bribies RG, Hickey MS. Population variation and differences in serum leptin independent of adiposity: a comparison of Ache Amerindian men of Paraguay and lean American male distance runners. Nutr Metab (Lond). 2006; 3: 34.
  • 16. Ruff CB. Body mass prediction from skeletal frame size in elite athletes. Am J Phys Anthropol. 2000; 113(4): 507-517.
  • 17. Cordain L, Friel J. The paleo diet for athletes: The ancient nutritional formula for peak athletic performance. Rodale Books. 2012.
  • 18. Australian Institute of Sport, Sports Nutrition Department. Protein? 2009.
  • 19. Phillips SM. Dietary protein requirements and adaptive advantages in athletes. Br J Nutr. 2012; 108 Suppl. 2: S158-167.
  • 20. Helms ER, Zinn C, Rowlands DS, Brown SR. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: A case for higher intakes. Int J Sport Nutr Exerc Metab. 2014; 24(2): 127-138.
  • 21. Acheson KJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Emady-Azar S, Ammon-Zufferey C, Monnard I, Pinaud S, Nielsen-Moennoz C, Bovetto L. Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr. 2011; 93(3): 525-534.
  • 22. Schreurs VVAM, Aarts M, IJssennagger N, Hermans J, Hendriks WH. Anaerobic power: potentials for physical fitness and weight management. Agro Food Industry Hi-Tech. 2007; 18(5): 25-28.
  • 23. Norton L, Wilson GJ. Optimal protein intake to maximize muscle protein synthesis. AgroFood industry hi-tech. 2009, 20: 54-57.
  • 24. Joy JM, Lowery RP, Wilson JM, Purpura M, De Souza EO, Wilson SM, Kalman DS, Dudeck JE, Jäger R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr J. 2013; 20; 12(1): 86.
  • 25. Campbell B, Kreider RB, Ziegenfuss T, La Bounty P, Roberts M, Burke D, Landis J, Lopez H, Antonio J. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007; 26; 4: 8.
  • 26. Volek JS, Volk BM, Gómez AL, Kunces LJ, Kupchak BR, Freidenreich DJ, Aristizabal JC, Saenz C, Dunn-Lewis C, Ballard KD, Quann EE, Kawiecki DL, Flanagan SD, Comstock BA, Fragala MS, Earp JE, Fernandez ML, Bruno RS, Ptolemy AS, Kellogg MD, Maresh CM, Kraemer WJ. Whey protein supplementation during resistance training augments lean body mass. J Am Coll Nutr. 2013; 32(2): 122-135.
  • 27. Volpe SL. Micronutrient requirements for athletes. Clin Sports Med. 2007; 26(1): 119-130.
  • 28. Kunstel K. Calcium requirements for the athlete. Curr Sports Med Rep. 2005; 4(4): 203-206.
  • 29. Ströhle A, Hahn A, Sebastian A. Latitude, local ecology, and hunter-gatherer dietary acid load: implications from evolutionary ecology. Am J Clin Nutr. 2010; 92(4): 940¬945.
  • 30. Wiederkehr M, Krapf R. Metabolic and endocrine effects of metabolic acidosis in humans. Swiss Med Wkly. 2001; 131(9-10): 127-132.
  • 31. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res. 2009; 24(11): 1835-1840.
  • 32. Bonjour JP. Nutritional disturbance in acid-base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney. Br J Nutr. 2013; 110(7): 1168-1177.
  • 33. Dawson-Hughes B, Harris SS, Ceglia L. Alkaline diets favor lean tissue mass in older adults. Am J Clin Nutr. 2008; 87(3): 662-665.
  • 34. Requena B, Zabala M, Padial P, Feriche B. Sodium bicarbonate and sodium citrate: ergogenic aids? J Strength Cond Res. 2005; 19(1): 213-224.
  • 35. Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, Jeukendrup AE. Training with low muscle glycogen enhances fat metabolism in well- trained cyclists. Med Sci Sports Exerc. 2010; 42(11): 2046-2055.
  • 36. Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK. Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol (1985). 2005; 98(1): 93-99.
  • 37. van Loon LJ. Intramyocellular triacylglycerol as a substrate source during exercise. Proc Nutr Soc. 2004; 63(2): 301-307.
  • 38. Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol (1985). 2011; 110(1): 236-245.
  • 39. Vogt M, Puntschart A, Howald H, Mueller B, Mannhart C, Gfeller-Tuescher L, Mullis P, Hoppeler H. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes. Med Sci Sports Exerc. 2003; 35(6): 952-960.
  • 40. Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Eaton SB, Crawford MA, Cordain L, Muskiet FA. Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet. Br J Nutr. 2010; 104(11): 1666-1687.
  • 41. Bizzaro N, Tozzoli R, Villalta D, Fabris M, Tonutti E. Cutting-edge issues in celiac disease and in gluten intolerance. Clin Rev Allergy Immunol. 2012; 42(3): 279-287.
  • 42. Vojdani A, Tarash I. Cross-Reaction between Gliadin and Different Food and Tissue Antigens. Food and Nutrition Sciences. 2013; 4 (1): 20-32.
  • 43. Jonsson T, Olsson S, Ahren B, B0g-Hansen TC, Dole A, Lindeberg S. Agrarian diet and diseases of affluence: Do evolutionary novel dietary lectins cause leptin resistance? BMC Endocr Disord. 2005; 10; 5: 10.
  • 44. Dalla Pellegrina C, Rizzi C, Mosconi S, Zoccatelli G, Peruffo A, Chignola R. Plant lectins as carriers for oral drugs: is wheat germ agglutinin a suitable candidate? Toxicol Appl Pharmacol. 2005 Sep 1; 207(2): 170-178.
  • 45. Zhou JR, Erdman JW Jr. Phytic acid in health and disease. Crit Rev Food Sci Nutr. 1995; 35(6): 495-508.
  • 46. Simopoulos AP. The importance of the omega-6/ omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 2008; 233(6): 674-688.
  • 47. Harris WS. The omega-6/omega-3 ratio and cardiovascular disease risk: uses and abuses. Curr Atheroscler Rep. 2006; 8(6): 453-459.
  • 48. Hoppe C, M0lgaard C, Vaag A, Barkholt V, Michaelsen KF. High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. Eur J Clin Nutr. 2005; 59(3): 393-398.
  • 49. Hoyt G, Hickey MS, Cordain L. Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. Br J Nutr. 2005; 93(2): 175-177.
  • 50. Melnik BC, Schmitz G, John S, Carrera-Bastos P, Lindeberg S, Cordain L. Metabolic effects of milk protein intake strongly depend on pre-existing metabolic and exercise status. Nutr Metab (Lond). 2013; 2; 10(1): 60.
  • 51. Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IM. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr. 2004; 80(5): 1246-1253.
  • 52. McGregor RA, Poppitt SD. Milk protein for improved metabolic health: a review of the evidence. Nutr Metab (Lond). 2013; 3; 10(1): 46.
  • 53. Roy BD. Milk: the new sports drink? A Review. J Int Soc Sports Nutr. 2008; 2; 5: 15.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9b739c40-571c-4400-896d-b5bcaf6441cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.