PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 2 |

Tytuł artykułu

Small scale habitat preferences of Myotis daubentonii, Pipistrellus pipistrellus, and potential aerial prey in an upland river valley

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Distribution and abundance of two temperate-zone insectivorous bats, Daubenton's (Myotis daubentonii) and common pipistrelle (Pipistrellus pipistrellus), and their potential prey were studied along an altitudinal river gradient in relation to environmental variables including air temperature, wind speed, water surface state, and presence or absence of bank-side trees. Using a Latin square design at ten different habitat combination types, ultrasound recordings and insect sampling were carried out to quantify bat habitat preferences and potential prey abundance and classification. Myotis daubentonii and P. pipistrellus activity was significantly higher over smooth water river sections with trees on either or both banks while cluttered and rapid water sections were avoided. Conversely, insect abundance was not related to water surface condition or the presence or absence of bank-side trees. Nematoceran dipterans made up 98% of insect numbers, with small numbers of brachycerans and cyclorrhaphans. The most common insect families were Chironomidae and Ceratopogonidae. There was no correlation between bat activity and aerial insect activity, suggesting that aerial prey availability is not the sole driver of bat habitat choice. Bat and insect abundance were each correlated positively with night-time air temperature. No bat passes or flying insects were recorded at temperatures < 4°C. At 5°C, only M. daubentonii were observed foraging, and at 6°C there were more M. daubentonii present than any other bat species. No correlation was found between number of bat passes hr-1 and wind speed, moon visibility, moon phase, and percentage cloud cover. Rain did not affect M. daubentonii, but P. pipistrellus preferred to forage on dry nights. Bats were predicted to forage preferentially where aerial insect abundance was highest but this was found to not be case, and other aspects such as detection of prey against clutter may have an important role to play in habitat choice.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.255-272,fig.,ref.

Twórcy

autor
  • Ocean Science Consulting Ltd. Spott Road, Dunbar, East Lothian, EH42 1RR, Scotland, United Kingdom
  • School of Media Arts and Technology, Southampton Solent University, East Park Terrace, Southampton SO14 0YN, United Kingdom
autor
  • Environment Department, University of York, Wentworth Way, Heslington, York YO10 5NG, United Kingdom

Bibliografia

  • 1. Abbott, I. M., D. P. Sleeman, and S. Harrison. 2009. Bat activity affected by sewage effluent in Irish rivers. Biological Conservation, 142: 2904–2914. Google Scholar
  • 2. Adams, A. M., M. K. Jantzen, R. M. Hamilton, and M. B. Fenton. 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods in Ecology and Evolution, 3: 992–998. Google Scholar
  • 3. Aldridge, H. D. J. N. 1988. Flight kinematics and energetics in the little brown bat, Myotis lucifugus, with reference to the influence of ground effect. Journal of Zoology (London), 216: 507–517. Google Scholar
  • 4. Aldridge, H. D. J. N., and I. L. Rautenbach. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
  • 5. Andersen, T. 1979. Some caddis flies (Trichoptera) in Western Norway, and their arrival pattern in light traps. Fauna Norvegica, 26B: 12–17. Google Scholar
  • 6. Anthony, E. L., and T. H. Kunz. 1977. Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology, 58: 775–786. Google Scholar
  • 7. Arbuthnott, D., and R. M. Brigham. 2007. The influence of a local temperature inversion on the foraging behaviour of big brown bats, Eptesicus fuscus. Acta Chiropterologica, 9: 193–201. Google Scholar
  • 8. Armitage, P., P. S. Cranston, and L. C. V. Pinder. 1995. The Chironomidae: the biology and ecology of non-biting midges. Chapman & Hall, London, 572 pp. Google Scholar
  • 9. Ávila-Cabadilla, L. D., G. A. Sanchez-Azofeifa, K. E. Stoner, M. Y. Alvarez-Añorve, M., Quesada, and C. A. Portillo-Quintero. 2012. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests. PLoS ONE, 7: e35228. Google Scholar
  • 10. Barclay, R. M. R. 1991. Population structure of temperate zone insectivorous bats in relation to foraging behavior and energy demand. Journal of Animal Ecology, 60: 165–178. Google Scholar
  • 11. Batschelet, E. 1981. Circular statistics in biology. Academic Press, London, 371 pp. Google Scholar
  • 12. Bellamy, C., and J. D. Altrincham. 2012. Mapping bat foraging habitat suitability in the Yorkshire Dales National Park: Habitat Suitability Modelling report. University of Leeds, Leeds, UK, 20 pp. Google Scholar
  • 13. Bellamy, C., A. Torsney, E. Brown, A. Glover, and J. Altrincham. 2012. Bat foraging habitat suitability maps for the Yorkshire Dales National Park. Habitat Suitability Modelling report, Part II December 2012. University of Leeds, Leeds, UK, 31 pp. Google Scholar
  • 14. Belwood, J. J., and M. B. Fenton. 1976. Variation in the diet of Myotis lucifugus (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 15: 1674–1678. Google Scholar
  • 15. Biscardi, S., D. Russo, V. Casciani, D. Cesarini, M. Mei, and L. Boitant 2007. Foraging requirements of the endangered long-fingered bat: the influence of micro-habitat structure, water quality and prey type. Journal of Zoology (London), 273: 372–381. Google Scholar
  • 16. Boonman, A. M., M. Boonman, F. Bretschneider, and W. A. van de Grind. 1998. Prey detection in trawling insectivorous bats: duckweed affects hunting behaviour in Daubenton's bat, Myotis daubentonii. Behavioral Ecology and Sociobiology, 44: 99–107. Google Scholar
  • 17. Boughey, K. L., I. R. Lake, K. A. Haysom, and P. M. Dolman. 2011a. Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat species across the UK. Biological Conservation, 144: 2300–2310. Google Scholar
  • 18. Boughey, K. L., I. R. Lake, K. A. Haysom, and P. M. Dolman. 2011b. Improving the biodiversity benefits of hedgerows: How physical characteristics and the proximity of foraging habitat affect the use of linear features by bats. Biological Conservation, 144: 1790–1798. Google Scholar
  • 19. Bradley, C. 1985. Sites of special scientific interest: river Wharfe, North Yorkshire in N. England. Section 23 of the Wildlife and Countryside Act, 1. Google Scholar
  • 20. Bridcut, E. E. 2000. A study of terrestrial and aerial macroinvertebrates on river banks and their contribution to drifting fauna and salmonid diets in a Scottish catchment. Hydrobiologia, 427: 83–100. Google Scholar
  • 21. Brigham, R. M., R. L. Francis, and S. Hamdorf. 1997a. Microhabitat use by two species of Nyctophilus bats: a test of ecomorphology theory. Australian Journal of Zoology, 45: 553–560. Google Scholar
  • 22. Brigham, R. M., S. D. Grindal, M. C. Firman, and J. L. Morissette. 1997b. The influence of structural clutter on activity patterns of insectivorous bats. Canadian Journal of Zoology, 75: 131–136. Google Scholar
  • 23. Burles, D. W., R. M. Brigham, R. A. Ring, and T. E. Reimchen. 2009. Influence of weather on two insectivorous bats in a temperate Pacific Northwest rainforest. Canadian Journal of Zoology, 87: 132–138. Google Scholar
  • 24. Childs, J., and T. Aldhous. 1995. Chemi-luminescent marking of Daubenton's bats at Stockgrove Country Park, Bedfordshire. Bat News, 36: 3–4. Google Scholar
  • 25. Chinery, M. 1993. Insects of Britain and Northern Europe. Harper Collins Publishers, London, 320 pp. Google Scholar
  • 26. Ciechanowski, M., T. Zając, A. Biłas, and R. Dunajski. 2007. Spatiotemporal variation in activity of bat species differing in hunting tactics: effects of weather, moonlight, food abundance, and structural clutter. Canadian Journal of Zoology, 85: 1249–1263. Google Scholar
  • 27. Clare, E., B. Barber, B. Sweeney, P. Hebert, and M. B. Fenton. 2011. Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology, 20: 1772–1780. Google Scholar
  • 28. Cryan, P. M., C. A. Stricker, and M. B. Wunder. 2012. Evidence of cryptic individual specialization in an opportunistic insectivorous bat. Journal of Mammalogy, 93: 381–389. Google Scholar
  • 29. Cucco, M., and G. Malacarne. 1996. Reproduction of the pallid swift (Apus pallidus) in relation to weather and aerial insect abundance. Italian Journal of Zoology, 63: 247–253. Google Scholar
  • 30. Danard, M. 1977. A simple model for mesoscale effects of topography on surface winds. Monthly Weather Review, 105: 572–581. Google Scholar
  • 31. Davidson-Watts, I., S. Walls, and G. Jones. 2006. Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biological Conservation, 133: 118–127. Google Scholar
  • 32. Davies-Colley, R. J., G. W. Payne, and M. van Elswijk. 2000. Microclimate gradients across a forest edge. New Zealand Journal of Ecology, 24: 111–121. Google Scholar
  • 33. de Jong, J., and Ahlén, I. 1991. Factors affecting the distribution pattern of bats in Uppland central Sweden. Holarctic Ecology, 14: 92–96. Google Scholar
  • 34. Downs, N. C., and P. A. Racey. 2006. The use by bats of habitat features in mixed farmland in Scotland. Acta Chiropterologica, 8: 169–185. Google Scholar
  • 35. Drury, R. L., and F. Geiser. 2014. Activity patterns and roosting of the eastern blossom-bat (Syconycteris australis). Australian Mammalogy, 36: 29–34. Google Scholar
  • 36. Dunn, J. C., and D. A. Waters. 2012. Altitudinal effects on habitat selection in two sympatric pipistrelle species. Mammalia, 76: 427–434. Google Scholar
  • 37. Eisentraut, M. 1952. Beobachtungen über Jagtroute und Flugbeginn. Bonner Zoologische Beitrage, 3: 200–211. Google Scholar
  • 38. Ekman, M., and J. de Jong. 1996. Local patterns of distribution and resource utlization of four bat species (Myotis brandti, Eptesicus nilssoni, Plecotus auritius and Pipistrellus pipistrellus) in patchy and continuous environments. Journal of Zoology (London), 238: 571–580. Google Scholar
  • 39. Erickson, J. L., and S. D. West. 2002. The influence of regional climate and nightly weather conditions on activity patterns of insectivorous bats. Acta Chiropterologica, 4: 17–24. Google Scholar
  • 40. Fellers, G. M., and E. D. Pierson. 2002. Habitat use and foraging behavior of Townsend's big-eared bat (Corynorhinus townsendii) in coastal California. Journal of Mammalogy, 83: 167–177. Google Scholar
  • 41. Fenton, M. B., H. G. Merriam, and G. L. Holroyd. 1983. Bats of Kootenay, glacier, and Mount Revelstoke National Parks in Canada — identification by echolocation calls, distribution, and biology. Canadian Journal of Zoology, 61: 2503–2508. Google Scholar
  • 42. Florsheim, J. L., J. F. Mount, and A. Chin. 2008. Bank erosion as a desirable attribute of rivers. Bioscience, 58: 519–529. Google Scholar
  • 43. Fowler, J., and L. Cohen. 1990. Practical statistics for field biology. John Wiley & Sons, Chichester, 227 pp. Google Scholar
  • 44. Fuentes-Montemayor, E., D. Goulson, L. Cavin, J. M. Wallace, and K. J. Park. 2013. Fragmented woodlands in agricultural landscapes: The influence of woodland character and landscape context on bats and their insect prey. Agriculture, Ecosystems & Environment, 172: 6–15. Google Scholar
  • 45. Fukui, D., M. Murakami, S. Nakano, and T. Aoi. 2006. Effect of emergent aquatic insects on bat foraging in a riparian forest. Journal of Animal Ecology, 75: 1252–1258. Google Scholar
  • 46. Furmankiewicz, J., and M. Kucharska. 2009. Migration of bats along a large river valley in southwestern Poland. Journal of Mammalogy, 90: 1310–1317. Google Scholar
  • 47. Gaisler, J., J. Zukal, Z. Řehák, and M. Homolka. 1998. Habitat preference and flight activity of bats in a city. Journal of Zoology (London), 244: 439–445. Google Scholar
  • 48. Gillam, E. H., and G. F. McCracken. 2007. Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Animal Behaviour, 74: 277–286. Google Scholar
  • 49. Gonsalves, L., B. Bicknell, B. Law, C. Webb, and V. Monamy. 2013. Mosquito consumption by insectivorous bats: does size matter? PLoS ONE, 8: e77183. Google Scholar
  • 50. Gray, L. J. 1993. Response of insectivorous birds to emerging aquatic insects in riparian habitats of a tallgrass prairie stream. American Midland Naturalist, 129: 288–300. Google Scholar
  • 51. Grindal, S. D., and R. M. Brigham. 1999. Impacts of forest harvesting on habitat use by foraging insectivorous bats at different spatial scales. Ecoscience, 6: 25–34. Google Scholar
  • 52. Grootaert, P., M. Pollet, W. Dekoninck, and C. Van Achterberg. 2010. Sampling insects: general techniques, strategies and remarks. Pp. 377–399, in Manual on field recording techniques and protocols for All Taxa Biodiversity Inventories ( J. Eymann, J. Degreef, H. Häuser, J. C. Monje, Y. Samyn, and D. V. Spiegel, eds.). Belgian National Focal Point to the Global Taxonomy Initiative, Brussels, Volume 8, Part 2, 653 pp. Google Scholar
  • 53. Hamilton, I. M., and R. M. R. Barclay. 1998. Ontogenetic influences on foraging and mass accumulation by big brown bats (Eptesicus fuscus). Journal of Animal Ecology, 67: 930–940. Google Scholar
  • 54. Hayes, J. P. 1997. Temporal variation in activity of bats and the design of echo location-monitoring studies. Journal of Mammalogy, 78: 514–524. Google Scholar
  • 55. Holloway, G. L., and R. M. R. Barclay. 2000. Importance of prarie riparian zones to bats in southeastern Alberta. Ecoscience, 7: 115–122. Google Scholar
  • 56. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54: 187–211. Google Scholar
  • 57. Jayanthi, K., and A. Verghese. 2013. Phototactic response of sapota seed borer, Trymalitis margarias Meyrick, a clue for integrated pest management. Pest Management in Horticultural Ecosystems, 15: 68–69. Google Scholar
  • 58. Johnson, C. G. 1969. Migration and dispersal of insects by flight. Methuen, London, xxii + 766 pp. Google Scholar
  • 59. Johnson, J. B., W. M. Ford, J. W. Edwards, and M. A. Menzel. 2010. Bat community structure within riparian areas of northwestern Georgia, USA. Folia Zoologica, 59: 192–202. Google Scholar
  • 60. Jones, G., and J. M. V. Rayner. 1988. Flight performance, foraging tactics and echolocation in free-living Daubenton's bats Myotis daubentoni (Chiroptera: vespertilionidae). Journal of Zoology (London), 215: 113–132. Google Scholar
  • 61. Jones, G., and J. M. V. Rayner. 1991. Flight performance, foraging tactics and echolocation in the trawling insectivorous bat Myotis adversus (Chiroptera: Vespertilionidae). Journal of Zoology (London), 225: 393–412. Google Scholar
  • 62. Jones, G., N. Vaughan, and S. Parsons, 2000. Acoustic identification of bats from directly sampled and time expanded recordings of vocalizations. Acta Chiropterologica, 2: 155–170. Google Scholar
  • 63. Jónssen, E. 1987. Flight periods of aquatic insects at Lake Esrom, Denmark. Archiv für Hydrobiologie, 110: 259–274. Google Scholar
  • 64. Kalko, E. K. V., and H.-U. Schnitzler. 1989. The echolocation and hunting behaviour of Daubenton's bat, Myotis daubentoni. Behavioral Ecology and Sociobiology, 24: 225–238. Google Scholar
  • 65. Kalko, E. K. V., and H.-U. Schnitzler. 1993. Plasticity in écholocation signals of European pipistrelle bats in search flight — implications for habitat use and prey detection. Behavioral Ecology and Sociobiology, 33: 415–428. Google Scholar
  • 66. Kapfer, G., T. Rigot, L. Holsbeek, and S. Aron. 2008. Roost and hunting site fidelity of female and juvenile Daubenton's bat Myotis daubentonii (Kuhl, 1817) (Chiroptera: Vespertilionidae). Mammalian Biology, 73: 267–275. Google Scholar
  • 67. Karlsson, B.-L., J. Eklöf, and J. Rydell. 2002. No lunar phobia in swarming insectivorous bats (family Vespertilionidae). Journal of Zoology (London), 256: 473–477. Google Scholar
  • 68. Kniowski, A. B., and S. D. Gehrt. 2014. Home range and habitat selection of the Indiana bat in an agricultural landscape. Journal of Wildlife Management, 78: 503–512. Google Scholar
  • 69. Koselj, K., H.-U. Schnitzler, and B. M. Siemers. 2011. Horseshoe bats make adaptive prey-selection decisions, informed by echo cues. Proceedings of the Royal Society, 278B: 3034–3041. Google Scholar
  • 70. Kovats, Z. K., J. J. H. Ciborowski, and L. D. Corkum. 1996. Inland dispersal of adult aquatic insects. Freshwater Biology, 36: 265–276. Google Scholar
  • 71. Kusch, J., and A. Schmitz. 2013. Environmental factors affecting the differential use of foraging habitat by three sympatric species of Pipistrellus. Acta Chiropterologica, 15: 57–67. Google Scholar
  • 72. Lang, A. B., E. K. V. Kalko, H. Römer, C. Bockholdt, and D. K. Dechmann. 2006. Activity levels of bats and katydids in relation to the lunar cycle. Oecologia, 146: 659–666. Google Scholar
  • 73. Levin, E., Y. Yom-Tov, and A. Barnea. 2009. Frequent summer nuptial flights of ants provide a primary food source for bats. Naturwissenschaften, 96: 477–483. Google Scholar
  • 74. Lewis, T. 1967. The horizontal and vertical distribution of flying insects near artificial windbreaks. Annals of Applied Biology, 60: 23–31. Google Scholar
  • 75. Lewis, T. 1969. The distribution of flying insects near a hedgerow. Journal of Applied Ecology, 6: 443–452. Google Scholar
  • 76. Lewis, T., and G. C. Dibley. 1970. Air movement near windbreaks and a hypothesis of the mechanism of the accumulation of air-borne insects. Annals of Applied Biology, 66: 477–484. Google Scholar
  • 77. Lewis, T., and J. W. Stephenson. 1966. The permeability of artificial windbreaks and the distribution of flying insects in the leeward sheltered zone. Annals of Applied Biology, 58: 355–363. Google Scholar
  • 78. Linke, S., E. Turak, and J. Nel. 2011. Freshwater conservation planning: the case for systematic approaches. Freshwater Biology, 56: 6–20. Google Scholar
  • 79. Lloyd, A., B. Law, and R. Goldingay. 2006. Bat activity on riparian zones and upper slopes in Australian timber production forests and the effectiveness of riparian buffers. Biological Conservation, 129: 207–220. Google Scholar
  • 80. Mackey, R. L., and Barclay, M. R. 1989. The influence of physical clutter and noise on the activity of bats over water. Canadian Journal of Zoology, 67: 1167–1170. Google Scholar
  • 81. Manel, S., Buckton, S. T., and Ormerod, S. J. 2000. Testing large-scale hypothesis using surveys: the effects of land use on the habitats, invertebrates and birds of the Himalayan rivers. Journal of Applied Ecology, 37: 756–770. Google Scholar
  • 82. Marsden, H. 1999. Whitaker's almanack. J. Whitaker & Sons Ltd. , London, 1280 pp. Google Scholar
  • 83. Meleason, M. A., and J. M. Quinn. 2004. Influence of riparian buffer width on air temperature at Whangapoua Forest, Coromandel Peninsula, New Zealand. Forest Ecology and Management, 191: 365–371. Google Scholar
  • 84. Moore, R. D., D. Spittlehouse, and A. Story. 2005. Riparian microclimate and stream temperature response to forest harvesting: a review. Journal of the American Water Resources Association, 41: 813. Google Scholar
  • 85. Morris, A. D., D. A. Miller, and M. C. Kalcounis-Rueppell. 2010. Use of forest edges by bats in a managed pine forest landscape. Journal of Wildlife Management, 74: 26–34. Google Scholar
  • 86. Myers, M. J., and V. H. Resh. 2000. Undercut banks: a habitat for more than just trout. Transactions of the American Fisheries Society, 129: 594–597. Google Scholar
  • 87. Nanson, G. C., and F. J. Hickin. 1986. A statistical analysis of bank erosion and channel migration in western Canada. Geological Society of America Bulletin, 97: 497–504. Google Scholar
  • 88. Negraeff, O. E., and R. M. Brigham. 1995. The influence of moonlight on the activity of little brown bats (Myotis lucifugus). Zeitschrift für Säugetierkunde, 60: 330–336. Google Scholar
  • 89. Nelson, J. M. 1965. A seasonal study of aerial insects close to a moorland stream. Journal of Animal Ecology, 34: 573–579. Google Scholar
  • 90. Newson, M., and J. Warner. 2007. Contrasting UK experiences with participatory approaches to integrated river basin management. Pp. 69–94, in Multi-stakeholder platforms for integrated water management ( J. Warner, ed.). Ashgate Publishing Ltd., Aldershot, xvi + 281 pp. Google Scholar
  • 91. Nicholls, B., and P. Racey. 2006a.Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behavioral Ecology and Sociobiology, 61: 131–142. Google Scholar
  • 92. Nicholls, B., and P. A. Racey. 2006b. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography, 29: 697–708. Google Scholar
  • 93. Norberg, U. M., and J. M. V. Rayner. 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society London, B316: 335–427. Google Scholar
  • 94. Nyholm, E. S. 1965. The ecology of Myotis mystacinus (Leisl.) and M. daubentoni (Leisl.) (Chiroptera). Annales Zoologici Fennici, 2: 77–123. Google Scholar
  • 95. Peng, R. K., C. R. Fletcher, and S. L. Sutton. 1992a. Effect of microclimate on flying dipterans. International Journal of Biometeorology, 36: 69–76. Google Scholar
  • 96. Peng, R. K., S. L. Sutton, and C. R. Fletcher. 1992b. Spatial and temporal distribution patterns of flying Diptera. Journal of Zoology (London), 228: 329–340. Google Scholar
  • 97. Polasky, S. 2008. Why conservation planning needs socioeconomic data. Proceedings of the National Academy of Sciences of the USA, 105: 6505–6506. Google Scholar
  • 98. Racey, P. A., and S. M. Swift. 1985. Feeding ecology of Pipistrellus pipistrellus (Chiroptera, Vespertilionidae) during pregnancy and lactation. 1. Foraging behaviour. Journal of Animal Ecology, 54: 205–215. Google Scholar
  • 99. Racey, P. R., S. Swift, J. Rydell, and L. Brodie. 1998. Bats and insects over two Scottish rivers with contrasting nitrate status. Animal Conservation, 1: 195–202. Google Scholar
  • 100. Rachwald, A., P. Boratyński, and W. K. Nowakowski. 2001. Species composition and activity of bats flying over rivers in the Bialowieża Primeval Forest. Acta Theriologica, 46: 235–242. Google Scholar
  • 101. Raven, P. J., N. T. H. Holmes, F. H. Dawson, P. J. A. Fox, M. Everard, I. R. Fozzard, and K. J. Rouen. 1998. River habitat quality: the physical character of rivers and streams in the UK and Isle of Man. Environment Agency SEPA/ Environment and Heritage Service, Bristol, 86 pp. Google Scholar
  • 102. Rieger, I. 1996. Activität von Wasserfledermäusen, Myotis daubentoni, über dem Rhein. Mitteilungen der Naturforschenden Gesellschaft Schaffhausen, 41: 27–58. Google Scholar
  • 103. Rieger, I., and A. Alder. 1993. Weitere Beobachtungen an Wasserfledermäuse, Myotis daubentoni auf Flugstrassen. Mitteilungen der Naturforschenden Gesellschaft Schaffhausen, 38: 1–34. Google Scholar
  • 104. Rydell, J. 1989. Feeding activity of the northern bat Eptesicus nilssonii during pregnancy and lactation. Oecologica, 80: 562–565. Google Scholar
  • 105. Rydell, J., A. Entwistle, and P. A. Racey. 1996. Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos, 76: 243–252. Google Scholar
  • 106. Rydell, J., L. A. Miller, and M. E. Jensen. 1999. Echolocation constraints of Daubenton's bat foraging over water. Functional Ecology, 13: 247–255. Google Scholar
  • 107. Scott, S., G. McLaren, G. Jones, and S. Harris. 2010. The impact of riparian habitat quality on the foraging and activity of pipistrelle bats (Pipistrellus spp.). Journal of Zoology (London), 280: 371–378. Google Scholar
  • 108. Senior, P., R. K. Butlin, and J. D. Altringham. 2005. Sex and segregation in temperate bats. Proceedings of the Royal Society, 272B: 2467–2473. Google Scholar
  • 109. Service, M. W. 1973. Spatial and temporal distribution of aerial populations of woodland tipulids (Diptera). Journal of Animal Ecology, 42: 295–303. Google Scholar
  • 110. Solem, J. O. 1978. Swarming and habitat segregation in the family Leptoceridae (Trichoptera). Norwegian Journal of Entomology, 25: 145–148. Google Scholar
  • 111. Spearman, J. R. 1991. Why do insectivorous bats in Britain not fly in daylight more frequently? Functional Ecology, 5: 518–524. Google Scholar
  • 112. Swift, S. M., P. A. Racey, and M. I. Avery. 1985. Feeding ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. II. Diet. Journal of Zoology (London), 54: 217–225. Google Scholar
  • 113. Taake, K. H. 1992. Strategien der Resourcennutzung an waldgewässern jagender Fledermäuse (Chiroptera: Vespertilionidae). Myotis, 30: 7–74. Google Scholar
  • 114. Taylor, L. R. 1958. Aphid dispersal and diurnal periodicity. Proceedings of the Linnean Society of London, 169: 67–73. Google Scholar
  • 115. Taylor, L. R. 1960. The distribution of insects at low level in the air. Journal of Animal Ecology, 29: 45–63. Google Scholar
  • 116. Taylor, L. R. 1963. Analysis of the effect of temperature on insects in flight. Journal of Animal Ecology, 32: 99–117. Google Scholar
  • 117. Taylor, L. R. 1974. Insect migration, flight periodicity and the boundary layer. Journal of Animal Ecology, 43: 225–238. Google Scholar
  • 118. Thomas, A. J., and D. S. Jacobs. 2013. Factors influencing the emergence times of sympatric insectivorous bat species. Acta Chiropterologica, 15: 121–132. Google Scholar
  • 119. Todd, V. L. G., and D. A. Waters. 2007. Strategy switching in the gaffing bat. Journal of Zoology (London), 273: 106–113. Google Scholar
  • 120. Unwin, D. M. 1981. A key to the families of British Diptera. AIDGAP Field Studies, 5: 513–553. Google Scholar
  • 121. Vaughan, N. 1997. The diets of British bats (Chiroptera). Mammal Review, 27: 77–94. Google Scholar
  • 122. Verboom, B., and H. Huitema. 1997. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecology, 12: 117–125. Google Scholar
  • 123. Verboom, B., and K. Spoelstra. 1999. Effects of food abundance and wind on the use of tree lines by an insectivorous bat, Pipistrellus pipistrellus. Canadian Journal of Zoology, 77: 1393–1401. Google Scholar
  • 124. Vesterinen, E. J., T. Lilley, V. N. Laine, and N. Wahlberg. 2013. Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton's bat (Myotis daubentonii) in Southwestern Finland. PLoS ONE, 8: e82168. Google Scholar
  • 125. Vindigni, M. A., A. D. Morris, D. A. Miller, and M. C. Kalcounis-Rueppell. 2009. Use of modified water sources by bats in a managed pine landscape. Forest Ecology and Management, 258: 2056–2061. Google Scholar
  • 126. Walsh, A. L., and Harris, S. 1996a. Factors determining the abundance of vespertilionid bats in Britain: geographical, land class and local habitat relationships. Journal of Applied Ecology, 33: 519–529. Google Scholar
  • 127. Walsh, A. L., and Harris, S. 1996b. Foraging habitat preferences of vespertilionid bats in Britain. Journal of Applied Ecology, 33: 508–518. Google Scholar
  • 128. Walsh, A. L., S. Harris, and A. M. Hutson. 1995. Abundance and habitat selection of foraging vespertilionid bats in Britain: a landscape-scale approach. Symposia of the Zoological Society of London, 67: 325–344. Google Scholar
  • 129. Walters, C. L., R. Freeman, A, Collen, C, Dietz, M. B. Fenton, G. Jones, M. K. Obrist, S. Puechmaille, J. Sattler, B. M. Siemers, et al. 2012. A continental-scale tool for acoustic identification of European bats Journal of Applied Ecology, 49: 1064–1074. Google Scholar
  • 130. Waringer, J. A. 1991. Phenology and the influence of meteorological parameters on the catching success of light-trapping for Trichoptera. Freshwater Biology, 25: 307–319. Google Scholar
  • 131. Warren, R., D. Waters, J. D. Altringham, and D. J. Bullock. 2000. The distribution of Daubenton's bats (Myotis daubentonii) and pipistrelle bats (Pipistrellus pipistrellus) (Vespertilionidae) in relation to small-scale variation in riverine habitat. Biological Conservation, 92: 85–91. Google Scholar
  • 132. Waters, D. A., and A. L. Walsh. 1994. The influence of bat detector brand on the quantitative estimation of bat activity. Bioacoustics, 5: 205–221. Google Scholar
  • 133. Yela, J. L., and M. Holyoak. 1997. Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environmental Entomology, 26: 1283–1290. Google Scholar
  • 134. Zeale, M. R., R. K. Butlin, G. L. Barker, D. C. Lees, and G. Jones. 2011. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11: 236–244. Google Scholar
  • 135. Zeale, M. R., I. Davidson-Watts, and G. Jones. 2012. Home range use and habitat selection by barbastelle bats (Barbastella barbastellus): implications for conservation. Journal of Mammalogy, 93: 1110–1118. Google Scholar
  • 136. Zsebok, S., F. Kroll, M. Heinrich, D. Genzel, B. M. Siemers, and L. Wiegrebe. 2013. Trawling bats exploit an echoacoustic ground effect. Frontiers in Physiology, 4: 65. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-9b488e04-d8b1-4a7c-8e25-a30391958730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.