PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 17 | 1 |

Tytuł artykułu

Changes in ion (K, Ca and Na) regulation, antioxidant enzyme activity and photosynthetic pigment content in melon genotypes subjected to salt stress - a mixture modeling analysis

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study aimed to identify the response of melon accessions and cultivars to salt stress in terms of ion exchange, enzyme activity, lipid peroxidation and photosynthetic pigment contents by mixture modelling. In mixture modeling, it is expected that the data set demonstrates a heterogeneous structure. This heterogeneity is characterized as unobservable heterogeneity. The data set’s heterogeneity produces severe deviations in the parameter assessments and the standard deviations. Heterogeneity is overcome when the data set separates itself into homogeneous sub-populations. Mixture modeling was performed using the Mclust mixture cluster program of the statistical software package R 5.2.3. Sub-populations were constructed by evaluating genotypes according to studied traits and correlation analysis was performed using the SPSS software package. The seedlings of 13 melon genotypes were harvested two weeks after salt application (0 mM or 50 mM NaCl) when symptoms of salt stress were observed. Nutrient contents and ratios (K, Ca, Na, K : Na and Ca : Na); superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities malondialdehyde (MDA) chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents were measured. Mixture modeling and correlation analysis were used in evaluating the experimental data sets. Differences in responses to salt application were observed among genotypes. While all genotypes exhibited negative responses in terms of K : Na ratio, which is an important parameter of salt tolerance, the smallest decreases in K : Na ratios were observed in the YYU-11 (–57.09%) and YYU-4 (–58.78%) genotypes, indicating them to be the most tolerant to salt stress. In general, enzyme activity decreased in response to salt application, although the responses varied among genotypes, especially with regard to CAT and APX activity. The YYU-29 genotype was notable as the genotype with the highest K : Na ratio (1.79) as well as the smallest change in MDA content under salt stress.

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.165-183,fig.,ref.

Twórcy

autor
  • Department of Agricultural Biotechnology, Agriculture Faculty, Yuzuncu Yil University, P.O. Box 65040, Van, Turkey

Bibliografia

  • Ahmad, P., Hakeem, K.R., Kumar, A., Ashraf, M., Akram, N.A. (2012). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr. J. Biotechnol., 11, 2694–2703.
  • Aktas, H., Dasgan, H.Y., Yetisir, H., Sari, N., Koc, S., Ekici, B., Solmaz, I., Unlu, H., Aloni, B. (2009). Variations in the response of different lines and hybrids of melon (Cucumis melo var. cantaloupensis) under salt stress. Am.-Eurasian J. Agric. Environ. Sci., 5, 485–493.
  • Amira, M.S., Qados, A. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci., 10, 7–15
  • Ashraf, M., Harris, P.J.C. (2004). Potential biochemical indictors of salinity tolerance in plants. Plant Sci., 166, 3–16.
  • Bharti, N., Pandey, S.S., Barnawal, D., Patel, V.K., Kalra, A. (2016). Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep., 6, 1–15.
  • Cakmak, I., Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol., 98, 1222–1227.
  • Carillo, P., Annunziata, M.G., Pontecorvo, G., Fuggi, A., Woodrow, P. (2011). Salinity stress and salt tolerance. In: Abiotic stress in plants-mechanisms and adaptations, Shanker, A.K., Venkateswarlu, B.B. (eds.). InTech, Croatia, 21–38.
  • Catalan, L., Bazlarini, Z., Talesnik, E., Serono, R., Karlin, U. (1994). Effect of salinity on germination and seedling growht of Prosopis flexuosa. For. Ecil. Mang., 63, 347–357.
  • Çulha, Ş., Çakirlar, H. (2011). The effect of salinity on plants and salt tolerance mechanisms. AKU J. Sci., 11, 11–34.
  • Dalrymple, M.L., Hudson, I.L., Ford, R.P.K. (2003). Finite mixture, zero-inflated poisson and hurdle models with application to SIDS. Comput. Stat. Data An., 41, 491–504.
  • Damianos, N., Savvas, D. (2016). NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake. Agric. Water Manageric., 165, 22–32.
  • Dasgan, H.Y., Aktaş, H., Abak, K., Çakmak, İ. (2002). Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci., 163, 695–703.
  • Dasgan, H.Y., Koc, S. (2009). Evaluation of salt tolerance in common bean genotypes by ion regulation and searching for screening parameters. J. Food Agric. Environ., 7, 363–372.
  • Davenport, R.J., Reid, R.J., Smith, F.A. (1997). Sodiumcalcium interaction in two wheat species differing in salinity tolerance. Physiol. Plant., 99, 323–327.
  • De Azevedo Neto, A.D., Prisco, J.T., Eneas-Filho, J., De Abreu, C.E.B., Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot., 56, 87–94.
  • Esfandieri, E., Shekari, F., Shekari, F., Esfandieri, M. (2007). The effect of salt stress on antıoxidant enzymes activity and lipid peroxidation on the wheat seedling. Not. Bot. Horti. Agrobot. Cluj-Napoca, 35, 48–56.
  • Faostat, (2013). Statistic Database. http://faostat.fao.org/ [date of access: 16.06.2017]. Franco, J.A., Fernandez, J.A., Banon, S., Gonzalez, A. (1997). Relationship between the effects of salinity on seedling leaf area and fruit yield of six muskmelon cultivars. Hortic. Sci., 32, 642–644.
  • Gomez, J.M, Hernandez, J.A., Jimenez, A, Del Rio, L.A., Sevilla, F. (1999). Differential response of antioxidative enzymes of chloroplast and mitochondria to long term NaCl stress of pea plants. Free Radic. Res., 31, 11–18.
  • Grattan, S.R. (1993). Plant response to salinity and crop tolerance. In: Agricultural salinity and drainage, Hanson, B.R, Grattan, S.R., Fulton A. (eds). University of California, Davis, 11–37.
  • Hagin, J., Olsen, S.R., Shaviv, A. (1990). Review of interaction of ammonium nitrate an potassium nutrition of crops. J. Plant Nutr., 13, 1211–1226.
  • Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198.
  • Heimler, D., Tattini, M., Ticci, S., Coradeshi, M.A., Traversi, M.L. (1995). Growth, ion accumulation, and lipid composition of two olive genotypes under salinity. J. Plant Nutr., 18, 1723–1734.
  • Jebara, S., Jebara, M., Limam, F., Aouani, M.E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J. Plant Physiol., 162, 929–936.
  • Keling, H., Ling, Z., Jitao, W., Yang, Y. (2013). Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress. Acta Soc. Bot. Pol., 82, 193–197.
  • Kipçak, S., Erdinç, Ç. (2016). Determination of salt tolerance levels of common bean (Phaseolus vulgaris L.) genotypes grown in Van Lake Basin. YYU J. Agric. Sci., 26(3), 421–429 (in Turkish).
  • Kusvuran, Ş., Ellialtioglu, S., Yasar, F., Abak, K. (2007a). Effects of salt stress on ion accumulation and activity of some antioxidant enzymes in melon (Cucumis melo L.). J. Food Agric. Environ., 5, 351–354.
  • Kuşvuran, Ş., Ellialtioğlu, S., Abak, K., Yaşar, F. (2007b). Response of some melon (Cucumis sp.) genotypes to salt stress. Ankara Univ. J. Agric. Sci., 13, 395–404.
  • Kuşvuran, Ş., Yaşar, F., Abak, K., Ellialtioğlu, Ş. (2008). Changes occur in lipid peroxidation, chloropyll and ion contents of some salt tolerant and sensitive Cucumis sp. genotypes grown under salinity stress. Y.Y.U. J. Agric. Sci., 18, 11–18.
  • Kuşvuran, S. (2012). Ion regulation in different organs of melon (Cucumis melo) genotypes under salt stress. Int. J. Agric. Biol., 14, 141–144.
  • Kuşvuran, Ş., Ellialtioğlu, Ş., Daşgan, H.Y., Abak, K. (2012). Salt tolerance some native melon accessions. Turk. J. Sci. Rev., 5, 151–153 (in Turkish).
  • Kusvuran, S., Kiran, S., Ellialtioglu, S.S. (2016). Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. In: Abiotic and biotic stress in plants – recent advances and future perspectives, Shanker, A., Shanker, C., (eds). InTech, Croatia, 481–503.
  • Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 11, 591–592.
  • Lopez, M.V., Satti, S.M.E. (1996). Calcium and potassiumenhanced growth and yield of tomato under sodium chloride stress. Plant Sci., 114, 19–27.
  • Mao, C.X., Yang, N., Zhong, J. (2013). On population size estimators in the poisson mixture model. Biometrics, 69, 758–765.
  • Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press, London, 657–680.
  • Martinez, M.J., Lavergne, C., Trottier, C. (2009). A mixture model-based approach to the clustering of exponential repeated data. J. Multivar. Anal., 100, 1938–1951.
  • Mendlinger, S., Pasternak, D. (1992). Screening for salt tolerance in melons. Hortic. Sci., 27, 905–907.
  • Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651–681.
  • Muthén, L.K., Muthén, B. (2014). Mplus: User’s guide. Muthén & Muthén, Los Angeles, CA. Naido, G. (1994). Growth water and ion relations in the coastal halophytes Trilochin bulbosa and T. striata. Environ Expl. Bot., 34, 419–426.
  • Peleg, Z., Walia, H., Blumwald, E. (2012). Integrating genomics and genetics to accelerate development of drought and salinity tolerant crops. In: Plant biotechnology and agriculture: Prospects for the 21st Century, Altman, A., Hasegawa, P.M. (eds). Academic Press, Elsevier, Amsterdam–Boston, 271–285.
  • Pitrat, M. (2008). Melon. In: Vegetables I, Asteraceae, Brassicaceae, Chenopodiaceae and Cucurbitaceae, Prohens, J., Nuez, F. (eds). Springer Science, Business Media, LLC, New York, 283–316.
  • Rubio, C., Hadisson, A., Martin, R.E., Baez, A., Martin, M.M., Álvarez, R. (2002). Mineral composition of the red and green pepper (Capsicum annuum) from Tenerife Island. Eur. Food Res. Technol., 214, 501–504.
  • Sensoy, S., Turkmen, O., Kabay, T., Erdinc, C., Turan, M., Yildiz, M. (2005). Determination of salinity tolerance of melon genotypes collected from Lake Van Basin. J. Bio-Sci., 5,
  • 637–642. Sensoy, S., Büyükalaca, S., Abak, K. (2007). Evaluation of genetic diversity in Turkish melons (Cucumis melo L.) based on phenotypic characters and RAPD markers. Genet. Res. Crop Evol., 54, 1351–1365.
  • Sensoy, S., Demir, S., Turkmen, O., Erdinc, C., Durak Demirer, E. (2012). Variation in the reaction of Lake Van Basin melon genotypes to Fusarium oxysporum f. sp. melonis. Int. J. Agric. Biol., 14, 1024–1026.
  • Sevengor, S., Yasar, F., Kusvuran, S., Ellialtioglu, S. (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. Afr. J. Agric. Res., 6, 4920–4924.
  • Shani, U., Dudley, L.M. (2001). Field studies of crop response to water and salt stress. Soil Sci. Soc. Am. J., 65, 1522–1528.
  • Shi, Q.H., Zhu, Z.J. (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ. Exp. Bot., 63, 317–326.
  • Tester, M., Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Ann. Bot., 91, 503–527.
  • Tuteja, N., Singh, L.P., Gill, S.S., Gill, R., Tuteja, R. (2012). Salinity stress: A major constraint in crop production. In: Improving crop resistance to abiotic stress, Tuteja, N., Gill, S.S., Tiburcio, A.F., Tuteja, R. (eds). Wiley- -Blackwell, Weinheim, 71–96.
  • Türkmen, Ö., Şensoy, S., Erdinç, Ç. (2008). Determination of yield and related traits of melon genotypes collected from Lake Van Basin. Selcuk J. Agric. Food Sci., 22, 64–70. (in Turkish).
  • Villora, G., Moreno, A., Pulgar, G., Romero, L. (2000). Yield improvement in zucchini under salt stress: determining micronutrient balance. Sci. Hortic. (Amsterdam), 86, 175–183.
  • Wang, P, Puterman, M.L., Cockburn, I.M., Le, N. (1996). Mixed poisson regression models with covariate dependent rates. Biometrics, 52, 381–400.
  • Wu, S.J., Ding, L., Zhu, J.K. (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 8, 617–627.
  • Yasar, F., Ellialtioglu, S., Yildiz, K. (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation and chlorophyll content in green bean. Russ. J. Plant Physiol., 55, 782–786.
  • Yeşilova, A., Özrenk, K., Kaki, B., Almali, M.N., Balta, F. (2010). Locational classification of walnut (Juglans Regia L.) genotypes collected from Lake Van Basin by using mixture modeling. Afr. J. Agric. Res., 5, 1509–1514.
  • Yeşilova, A., Yilmaz, A., Ser, G., Kaki, B. (2016). Modeling with Gaussian mixture regression for lactation milk yield in Anatolian buffaloes. Indian J. Anim. Res., 50, 989–994.
  • Yildiz, S., Balkaya, A. (2016). The hypocotyls traits of salt tolerant winter squash and pumpkin rootstocks and the determination of grafting compatibility with cucumber. YYU J. Agric. Sci., 26, 538–546.
  • Yilmaz, E., Tuna, A.L., Bürün, B. (2011). Tolerance strategies developed by plants to the effects of salt stress. C.B.U. J. Sci., 7, 47–66.
  • Yoshida, K. (2002). Plant biotechnology: Genetic engineering to enhance plant salt tolerance. J. Biosci. Bioeng., 94, 585–590.
  • Yu, B., Gong, H., Liu, Y. (1998). Effects of calcium on lipid composition and function of plasma membrane and tonoplast vesicle isolated from roots of barley seedlings under salt stress. J. Plant Nutr., 21, 1589–1600.
  • Zengin, F.K. (2007). Effects of some heavy metals on pigment content in bean (Phaseolus vulgaris L. cv. Strike) seedlings. KSU J. Sci. Engin., 10, 6–12.
  • Zhu, J.K. (2001). Plant salt tolerance. Trends Plant Sci., 6, 66–71.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9b32aafc-2304-4918-9f66-f66e9d3b9239
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.