PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 1 |

Tytuł artykułu

Antimony ore tailings: heavy metals, chemical speciation, andleaching characteristics

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Antimony ore tailings slag was used analyze heavy metals, chemical speciation, and leaching characteristics. The results show that the residual silicate phases account for 65.44% of Sb, 77.22% of As, 87.94% of Hg, 58.53% of Pb, 71.27% of Cd, and 96.34% of Zn. Although the exchangeable and carbonate phases account for 7.71% of Sb, 0.71% of As, 3.77% of Hg, 4.82% of Pb, 1.83% of Cd, and 1.73% of Zn, the water-or-acid-soluble phases contribute more to the chemical speciation of heavy metals. Concentrations of Sb, As, and Hg in the leachates increased with increasing solid-liquid ratio, decreasing particle size and increasing temperature. In simulated rainfall conditions, the total quantity increased in the order Sb > As > Hg and were 42.508 mg, 52.940 μg, and 0.876 μg, respectively, at 500 g antimony ore tailings. Under different rainfall intensity simulations, the maximum quantity in the leachates of Sb, As, and Hg were 93.894 mg, 255.451 μg, and 1.690 μg, respectively, and increased in the order of moderate > heavy > rainstorm. Finally, the cumulative leaching of Sb at pH 6.0 is 42.025 mg/L (higher than at 4.0 and 5.0), and the As and Hg at pH 4.0 are 107.097 μg/L and 0.989 μg/L, respectively.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

1

Opis fizyczny

p.485-49,fig.,ref.

Twórcy

autor
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, China
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
autor
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, Chin
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
  • Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, China
  • School of Science and Sport, University of the West of Scotland, Paisley, United Kingdom
autor
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China

Bibliografia

  • 1. ELSHARJAWY A.A., AMIN A.S.. Use of cloud-point preconcentration for spectrophotometric determination of trace amounts of antimony in biological and environmental samples. Analytical Biochemistry. 492, 1, 2016.
  • 2. FORT M., GRIMALT J.O., QUEROL X., CASAS M., SUNYER J. Evaluation of atmospheric inputs as possible sources of antimony in pregnant women from urban areas. Science of the Total Environment. 544, 391, 2016.
  • 3. SHARIFI R., MOORE F., KESHAVARZI B. Mobility and chemical fate of arsenic and antimony in water and sediments of Sarouq River catchment, Takab geothermal field, northwest Iran[J]. Journal of Environmental Management. 170 (02), 136, 2016.
  • 4. SUN W., XIAO E., DONG Y., TANG S., KRUMINS V., NING Z., SUN M., ZHAO Y., WU S., XIAO T. Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Science of the Total Environment. 550, 297, 2016.
  • 5. WU F., FU Z., LIU B., MO C., CHEN B., CORNS W., LIAO H. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Science of the Total Environment. 409 (18), 3344, 2011.
  • 6. PENG B., LIU Z., CHAI L., LIU H., YANG S., YANG B., XIANG K., LIU C. Effect of copper ions on the mercury re-emission in a simulated wet scrubber. Fuel, 2016.
  • 7. LIU Z., WANG D., PENG B., CHAI L., LIU H., YANG S., YANG B., XIANG K., LIU C. Transport and transformation of mercury during wet flue gas cleaning process of nonferrous metal smelting. Environmental Science & Pollution Research. 24 (28), 22494, 2017.
  • 8. GUO X., WANG K., HE M., LIU Z., YANG H., LI S. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors. 26 (7), 1549, 2014.
  • 9. WILSON S.C., LOCKWOOD P.V., ASHLEY P.M., TIGHE M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution. 158 (5), 1169, 2010.
  • 10. HU X., HE M., KONG L. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. Journal of Geochemical Exploration. 176, 76, 2016.
  • 11. LI Y., LIU Z., LIU H., PENG B. Clean strengthening reduction of lead and zinc from smelting waste slag by iron oxide. Journal of Cleaner Production. 143, 311, 2016.
  • 12. BECH J., CORRALES I., TUME P., BARCELÓ J., DURAN P., ROCA N., POSCHENRIEDER C. Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). Journal of Geochemical Exploration. 113 (1), 100, 2012.
  • 13. BIVER M., SHOTYK W. Experimental study of the kinetics of ligand-promoted dissolution of stibnite (Sb₂S₃). Chemical Geology. 294-295 (4), 165, 2012.
  • 14. SHTANGEEVA I., BALI R., HARRIS A. Bioavailability and toxicity of antimony [J]. Journal of Geochemical Exploration. 110 (1), 40, 2011.
  • 15. SHTANGEEVA I., NIEMELÄ M., PERÄMÄKI P. Effects of soil amendments on antimony uptake by wheat[J]. Journal of Soils & Sediments. 14 (4), 679, 2014.
  • 16. BIVER M., SHOTYK W. Stibiconite (Sb₃O₆OH), senarmontite (Sb₂O₃) and valentinite (Sb₂O₃): Dissolution rates at pH 2–11 and isoelectric points. Geochimica Et Cosmochimica Acta. 109 (3), 268, 2013.
  • 17. BIVER M., SHOTYK W. Stibnite (Sb₂S₃) oxidative dissolution kinetics from pH 1 to 11[J]. Geochimica Et Cosmochimica Acta. 79 (3), 127, 2012.
  • 18. ZHANG R.L., ZHANG X.F., TANG S.Z., HUANG A.D. Ultrasound-assisted HCl–NaCl leaching of lead-rich and antimony-rich oxidizing slag. Ultrasonics Sonochemistry. 27, 187, 2015.
  • 19. REN B., ZHOU Y., HURSTHOUSE A.S. DENG R. Research on the Characteristics and Mechanism of the Cumulative Release of Antimony from an Antimony Smelting Slag Stacking Area under Rainfall Leaching. Journal of Analytical Methods in Chemistry. 2017 (4), 1, 2017.
  • 20. REN B., ZHOU Y., MA H., DENG R., ZHANG P., HOU B. Sb release characteristics of the solid waste produced in antimony mining smelting process. Journal of Material Cycles & Waste Management. 1-8, 2016.
  • 21. KWONG Y.T.J., WHITLEY G., ROACH P., EPPINGER R.G., FUGE R. Natural acid rock drainage associated with black shale in the Yukon Territory, Canada. Applied Geochemistry. 24 (2), 221, 2009.
  • 22. VERPLANCK P.L., NORDSTROM D.K., BOVE D.J., PLUMLEE G.S., RUNKEL R.L., EPPINGER R.G., FUGE R. Naturally acidic surface and ground waters draining porphyry-related mineralized areas of the Southern Rocky Mountains, Colorado and New Mexico. Applied Geochemistry. 24 (2), 255, 2009.
  • 23. ASTA M.P., AYORA C., ROMÁN-ROSS G., CAMA J., ACERO P., GAULT A.G., CHARNOCK J.M., BARDELLI F. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates. Chemical Geology. 271 (1-2), 1, 2010.
  • 24. MONCUR M.C., JAMBOR J.L., PTACEK C.J., BLOWES D.W., THOMPSON A., VAUGHAN D.J. Mine drainage from the weathering of sulfide minerals and magnetite. Applied Geochemistry. 24 (12), 2362, 2009.
  • 25. U.S. Geological Survey, Mineral Commodity Summaries 2013. Washington, 2013.
  • 26. HE M., WANG X., WU F., FU Z. Antimony pollution in China. The Science of the total environment. 421-422 (3), 41, 2012.
  • 27. M H. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environmental Geochemistry and Health. 29 (3), 209, 2007.
  • 28. LI J., WEI Y., ZHAO L., ZHANG J., SHANGGUAN Y., LI F., HOU H. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicology & Environmental Safety. 110 (110), 308, 2014.
  • 29. CIDU R., BIDDAU R., DORE E., VACCA A.,MARINI L. Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): Strategies to mitigate contamination. Science of the Total Environment. 497-498 (1), 319, 2014.
  • 30. WANG X., HE M., XI J., LU X. Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchemical Journal. 97 (1), 4, 2011.
  • 31. TIGHE M., LOCKWOOD P., WILSON S. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J Environ Monit. 7 (12), 1177, 2005.
  • 32. MITSUNOBU S., MURAMATSU C., WATANABE K., SAKATA M. Behavior of antimony(V) during the transformation of ferrihydrite and its environmental implications. Environmental Science & Technology. 47 (17), 9660, 2013.
  • 33. TESSIER A., CAMPBELL P.G.C., BISSON M. Particulate trace metal speciation in stream sediments and relationships with grain size: Implications for geochemical exploration[J]. Journal of Geochemical Exploration. 16 (2), 77, 1982.
  • 34. LEE P.K., YU S. Lead isotopes combined with a sequential extraction procedure for source apportionment in the dry deposition of Asian dust and non-Asian dust. Environmental Pollution. 210, 65, 2016.
  • 35. ALABED S.R., HAGEMAN P.L., JEGADEESAN G., MADHAVAN N., ALLEN D. Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Science of the Total Environment. 364 (1–3), 14, 2006.
  • 36. ZHOU S., LI N., REN B., ZHANG P. Release Law of Sb, As, and Hg in Antimony Smelting Slag Under Simulated Acid Rain. Polish Journal of Environmental Studies., 26 (2), 925, 2017.
  • 37. ZHAO G.H., LUO X.Z., CHEN G., ZHAO Y.J. A longterm static immersion experiment on the leaching behavior of heavy metals from waste printed circuit boards. Environmental Science Processes & Impacts. 16 (8), 1967, 2014.
  • 38. LIU H., LEI T.W., ZHAO J., YUAN C.P., FAN Y.T., QU L.Q. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method[J]. Journal of Hydrology. 396 (1), 24, 2011.
  • 39. QAJAR J., ARNS C.H. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition. Journal of Contaminant Hydrology. 192, 60, 2016.
  • 40. POTYSZ A., KIERCZAK J., FUCHS Y., GRYBOS M., GUIBAUD G., LENS P.N.L., HULLEBUSCH E.D.V. Characterization and pH-dependent leaching behaviour of historical and modern copper slags. Journal of Geochemical Exploration. 160, 1, 2016.
  • 41. RIVERA-VASQUEZ B.F., DIXON D. Rapid atmospheric leaching of enargite in acidic ferric sulfate media. Hydrometallurgy. 152, 149, 2015.
  • 42. LI H., WANG Z., YANG Z., CHAI L., LIAO Y. Static and Dynamic Leaching of Chromium(VI) from Chromium-Containing Slag. Environmental Engineering Science. 29 (6), 426, 2012.
  • 43. HU X., HE M., KONG L. Photopromoted oxidative dissolution of stibnite. Applied Geochemistry. 61, 53, 2015.
  • 44. KYZAS G.Z., MATIS K.A. Methods of arsenic wastes recycling: Focus on flotation. Journal of Molecular Liquids. 214, 37, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9b08fd57-aef6-4e0d-9f6d-579e81bc9c1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.