PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 19 | 1 |

Tytuł artykułu

Phytodegrdation and biodegradation in rhizosphere as efficient methods of reclamation of soil, contaminated by organic chemicals (a review)

Treść / Zawartość

Warianty tytułu

PL
Fitodegradacja I biodegradacja e ryzosferze jako skuteczne metody rekultywacji gruntów skażonych związkami organicznymi (artykuł przeglądowy)

Języki publikacji

EN

Abstrakty

EN
Technical methods of purification of large areas of low and medium pollution are powerful, but extremely difficult to apply on a wide scale. This is due to high costs and the need to have specialised equipment during remediation. Phytoremediation is a much less complicated method. This environment cleaning technology uses the above-average capacity of some plant species to accumulate (socalled hyper-accumulation) or metabolise toxic chemicals. Soil microorganisms living in the rhizosphere also play an invaluable role in the degradation of harm-ful organic compounds; they are often much more involved in the mineralisation of xenobiotics than plants. Since plants provide favourable conditions for soil microorganisms to live – specific cooperation between them is possible. This kind of relationship can be useful in very effective removal of many toxic organic compounds, such as pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons and other petroleum compounds, from the soil. Although this process is relatively slow compared to other methods, its low invasiveness and economic considerations make it worthwhile. Currently, attempts at improvement of the natural process of phytoremediation using genetic engineering are undertaken more and more often. Among other things, genes encoding cytochromes from other organisms are implanted into the plant genome. This idea is constantly being developed and the results of research that is more and more widely conducted in this are promising.
PL
Techniczne metody oczyszczania rozległych terenów o niskim i średnim stopniu zanieczyszczenia są wprawdzie wydajne, ale jednocześnie niezwykle trudno je zastosować na szerszą skalę. Związane jest to z wysokimi kosztami, oraz potrzebą dysponowania wyspecjalizowanym sprzętem podczas remediacji. Znacznie mniej skomplikowaną metodą jest fitoremediacja. Jest to technologia oczyszczania środowiska, która wykorzystuje ponadprzeciętne zdolności niektórych gatunków roślin do akumulacji (tzw. hiperakumulacji) lub metabolizowania trujących substancji chemicznych. Nieocenioną rolę przy degradacji szkodliwych związków organicznych pełnią także mikroorganizmy glebowe, które bytując w strefie przykorzeniowej często w znacznie większym stopniu niż rośliny uczestniczą w mineralizacji ksenobiotyków. Poprzez to, iż rośliny stwarza-ją mikroorganizmom glebowym dogodne warunki do życia – dochodzi tutaj do swoistej współpracy między nimi. Wykorzystując tę współpracę można również w sposób bardzo efektywny usuwać z gleby wiele toksycznych związków organicznych takich jak pestycydy, polichlorowane bifenyle, wielopierścieniowe węglowodory aromatyczne oraz inne związki ropopochodne. Chociaż jest to proces stosunkowo powolny w porównaniu z innymi metodami, niska inwazyjność oraz względy ekonomiczne przemawiają na jego korzyść. Obecnie coraz częściej obserwuje się próby usprawnienia naturalnego procesu fitoremediacji przez wykorzystanie metod inżynierii genetycznej. Między innymi wszczepia się do genomu roślinnego geny kodujące cytochromy z innych organizmów. Pomysł ten jest stale rozwijany, a wyniki coraz śmielej prowadzonych w tym zakresie prac badawczych są obiecujące.

Wydawca

-

Czasopismo

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.153-169,fig.,ref.

Twórcy

  • Department of Plant Physiology and Biotechnology, The John Paul II Catholic University of Lublin, ul.Konstantynow 1H, 20-708 Lublin, Poland
autor
autor

Bibliografia

  • Alkio M., Tabuchi T. M., Wang X., Colon-Carmona A., 2005. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany, 56, 421, 2983-2994.
  • Barr D., Aust S., 1994. Mechanisms white rot fungi use to degrade pollutants. Environmental Science and Technology, 28, 79-87.
  • Bruns-Nagel D., Breitung J., von Low E., Steinbach K., Gorontzy T., Kahl M., Blotevogel K., Gemsa D., 1996. Microbial transformation of 2,4,6-trinitrotoluene in aerobic soil columns. Applied and Environ-mental Microbiology, 62, 2651-6.
  • Cashman JR., 2002. Human and plant flavin containing monooxygenase N-oxygenation of amines: detoxication vs. bioactivation. Drug Metabolism and Disposition, 34, 3, 513-521.
  • Coleman J., Blake-Kalff M., Davies T., 1997. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends in Plant Science, 2,4, 144-151.
  • Collins C., Fryer M., Grosso A., 2006. Plant uptake of non-Ionic organic chemicals. Environmental Science and Technology, 40, 45-52.
  • Dixit P., Singh S., Mukherjee P., Eapen S., 2008. Development of transgenic plants with cytochrome P450E1 gene and glutathione-S-transferase gene for degradation of organic pollutants. Journal of Bio-technology, 136S, S692-3.
  • Doty S., 2008. Enhancing phytoremediation through the use of transgenic plants and entophytes. New Phytologist, 179, 318-33.
  • Doty S., James C., Moore A., Vajzovic A., Singleton G., Ma C., Khan Z., Xin G., Kang JW., Park JY., Meilan R., Strauss S., Wilkerson J., Farin F., Strand S., 2007. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proceedings of the National Academy of Sciences USA, 104, 16816-21.
  • Doty S., Shang Q., Wilson A., Moore A., Newman L., Strand S., Gordon M., 2000. Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proceedings of the Na-tional Academy of Sciences USA, 97, 6287-91.
  • Duran N., Esposito E., 2002. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28, 83-99.
  • Eapen S., Singh S., D’Souza S., 2007. Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnology Advances, 25, 442-451.
  • Edwards R., Dixon D., Walton V., 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science, 5, 5, 193-198.
  • Escalante-Espinosa E., Gallegos-Martinez M. E., Favel A., Torres E., Gutierrez-Rojas M., 2005. Improve-ment of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. Inoculated with a microbial consortium in a model system. Chemosphere, 59, 405-413.
  • Flocco C., Lindblom S., Smits E., 2004. Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. International Journal of Phytoremediation, 6, 289-304.
  • French CE, Nicklin S, Bruce N., 1998. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Applied and Environmental Microbiology, 64, 2864-8.
  • Greń I., Guzik U., Wojcieszyńska D., Łabużek S., 2008. Molekularne podstawy rozkładu ksenobiotycznych związków aromatycznych. Biotechnologia, 2 , 58-67.
  • Gullner G., Komives T., Rennenberg H., 2001. Enhanced tolerance of transgenic poplar plants overex-pressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides. Journal of Experimental Botany, 52, 971-9.Harwood C., Parales R., 1996. The β-ketoadipate pathway and the biology of self-identity. Annual Reviews of Microbiology, 50, 553-590.
  • Hynes R. K., Farrell R. E., Germida J. J., 2004. Plant assisted degradation of phenanthrene as assessed by solid-phase microextraction (SPME). International Journal of Phytoremediation, 6, 253-268.
  • Inui H., Ueyama Y., Shiota N., Ohkawa Y., Ohkawa H., 1999. Herbicide metabolism and crosstolerance in transgenic potato plants expressing human CYP1A1. Pesticide Biochemistry and Physiology, 64, 33-46.
  • Ishiyama D., Vujaklija D., Davies J., 2004. Novel pathway of salicylate degradation by streptomyces sp. strain WA46. Applied and Environmental Microbiology, 70, 1297-1306.
  • Jansen M., Hill L., Thorneleye R., 2004. A novel stress-acclimation response in Spirodela punctata (Lemna-ceae): 2,4,6 trichlorophenol triggers an increase in the level of an extracellular peroxidase, capable of the oxidative dechlorination of this xenobiotic pollutant. Plant, Cell and Environment, 27, 603-613.
  • Joner E., Leyval C., 2001. Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10, 155-159.
  • Kaimi E., Mukaidani T., Miyoshi S., Tamaki M., 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environmental and Experimental Botany, 55, 110-119.
  • Karavangeli M., Labrou N., Clonis Y., Tsaftaris A., 2005. Development of transgenic tobacco plants overex-pressing glutathione S-transferase I from chloroacetanilide herbicides phytoremediation. Biomolecular Engineering, 22, 121-8.
  • Kim J., Sung K., Corapcioglu M.Y., Drew M.C., 2004. Solute transport and extraction by a single root in unsaturated soils: model development and experiment. Environmental Pollution, 131, 61-70.
  • Kirk J., Klironomos J., Lee H., Trevors J., 2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution,133, 455-465.
  • Komives T., Gullner G., 2005. Phase I xenobiotic metabolic systems in plants. Zeitschrift für Naturforschung C, 60, 179-185.
  • Kreuz K., Tommasini R., Martinoia E., 1996. Old enzymes for a new job. Herbicide detoxification in plants. Plant Physiology, 111, 349-353.
  • Kvesitadze E., Sadunishvili T., and Kvesitadze G., 2009. Mechanisms of organic contaminants uptake and degradation in plants. World Academy of Science, Engineering and Technology, 55, 458-468.
  • Labrou N., Kotzia G., Clonis Y., 2004. Engineering the xenobiotic substrate specificity of maize glutathione S-transferase I. Protein Engineering, Design and Selection 17, 10, 741-748.
  • Lao S-H., Loutre C., Braizer M., Coleman J., Cole D., Edwards R., Theodoulou F., 2003. 3,4-Dichloroaniline is detoxified and exported via different pathways in Arabidopsis and soybean. Phyto-chemistry, 63, 653-661.
  • Leszczyński B., 2001. Wybrane zagadnienia z biochemii i toksykologii środowiska. Wydawnictwo Akademii Podlaskiej, Siedlce.
  • Li H., Sheng G., Chiou C., Xu O., 2005. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environmental Science and Technology, 39, 4864-4870.
  • Li X., Guo M., Fan J., Tang W., Deqiang W., Ge H., Rong H., Teng M., Niu L., Liu Q., Hao Q., 2006. Crystal structure of 3-hydroxyanthranilic acid 3,4-dioxygenase from Saccharomyces cerevisiae: A spe-cial subgroup of the type III extradiol dioxygenases. Protein Science 15, 761-773.
  • McCutcheon S.C., Schnoor J.L., 2003. Phytoremediation: Transformation and control of contaminants, Wiley-Interscience, New York.
  • Meharg A., Cairney J., 2000. Ectomycorrhizas - extending the capabilities of rhizosphere remediation? Soil Biology and Biochemistry 32, 1475-1484.
  • Noctor G., Foyer CH., 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Re-view of Plant Physiology and Plant Molecular Biology, 49, 249-79.Noctor G., StrohmM., Jouanin L., Kunert KJ., Foyer CH., Rennenberg H., 1996. Synthesis of glutathione in leaves of transgenic poplar overexpressing [gamma]-glutamylcysteine synthetase. Plant Physiology, 112, 1071-8.
  • Pilon-Smits E., 2005. Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
  • Reineke W., 1998. Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annual Reviews of Microbiology, 52, 287-331.
  • Richman M., 1996. Terrestrial plants tested for cleanup of radionuclides, explosives residue. Water Envi-ronment and Technology, 8, 17-8.
  • Różański L., 1998. Przemiany pestycydów w organizmach żywych i środowisku. Wyd. AGRA-ENVIROLAB, Poznań.
  • Rylott E., Bruce N., 2009. Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends in Biotechnology, 27, 73-81.
  • Salzer P., Corbere H., Boller T., 1999. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta, 208, 319-325.
  • Schwab A., Banks M., 1994. Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. [in:] Bioremediation through rhizosphere technology. American Chemical Society, Washington DC, 132-141.
  • Shiota N., Inui H., Ohkawa H., 1996. Metabolism of the herbicide chlortoluron in transgenic tobacco plants expressing the fused enzyme between rat cytochrome P4501A1 and yeast NADPH-cytochrome P450 oxidoreductase. Pesticide Biochemistry and Physiology, 54, 190-198.
  • Shiota N., Nagasawa A., Sakakai T., Yabusaki Y., Ohkawa H., 1994. Herbicideresistant tobacco plants expressing the fused enzyme between rat cytochrome P4501A1 (CYP1A1) and yeast NADPH-cytochrome P450 oxidoreductase, Plant Physiology, 106, 17-23.
  • Shiots N., Kodama S., Inui H., Ohkama H., 2000. Expression of cytochrome P450 1A1 and P450 1A2 as fused enzymes with yeast NADPH-cytochrome P450 oxidoreductase in transgenic tobacco plants. Bioscience, Biotechnology, and Biochemistry, 64, 2025-2033.
  • Skipsey M., Cummins I., Andrews C., Jepson I., Edwards R., 2005. Manipulation of plant tolerance to herbicides through coordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate. Plant Biotechnology Journal, 3, 409-420.
  • Sonoki T., Kajita S., Ikeda S., Uesugi M., Tatsumi K., Katayama Y., 2005. Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Applied Microbiology and Biotechnology, 67, 138-42.
  • Stottmeister U., Wiessner A., Kuschk P., Kappelmeyer U., Kastner M., Bederski O., Muller R.A., Moor-mann H., 2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment Biotechnology Advances., 22, 93-117.
  • Sylvestre M., Macek T., Mackova M., 2009. Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Current Opinion in Biotechnology, 10, 1016/j.copbio. 2009. 01.006.
  • Uchida E, Ouchi T., Suzuki Y., Yoshida T., Habe H., Vamaguchi I., 2005. Secretion of bacterial xenobiotic-degrading enzymes from transgenic plants by an apoplastic expressional system: an applicability for phytoremediation. Environmental Science and Technology, 39, 7671-7.
  • Ullrich R., Hofrichter M., 2007. Enzymatic hydroxylation of aromatic compounds. Cell and Molecular Life Sciences, 64, 271-293.
  • Urbanek H., Majorowicz H., Zalewski M., Saniewski M., 2005. Induction of glutathione S transferase and glutathione by toxic compounds and elicitors in reed canary grass. Biotechnology Letters, 27, 911.914.
  • Vaillancourt F., Bolin J., Eltis L., 2006. The ins and outs of ring-cleaving dioxygenases. Critical Reviews in Biochemistry and Molecular Biology, 41, 241-267.
  • Walker C., Hopkin S., Sibly R., Peakall D., 2002. Podstawy ekotoksykologii. PWN, Warszawa
  • Wang G., Li Q., Luo B., Chen X., 2004. Ex planta phytoremediation of trichlorophenol and phenolic al-lelochemicals via an engineered secretory laccase. Nature Biotechnology, 22, 893-897.
  • Wójcik P., Tomaszewska B., 2005. Biotechnologia w remediacji zanieczyszczeń organicznych. Biotechnologia 71, 156 -172.
  • Wojtaszek P., Woźny A, Ratajczak L., 2006. Podstawy biologii komórki roślinnej. PWN, Warszawa.
  • Zakrzewski S., 2000. Podstawy toksykologii środowiska. PWN, Warszawa.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9ab10827-5355-4a76-b386-e9c8d882c3a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.