PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Cytosolic glutathione S-transferase in bacteria: a review

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cytosolic glutathione S-transferase in bacteria possesses the biochemical capacity to degrade various classes of organochlorine pollutants in the environment in addition to their primary role of defending the organism from a wide range of endobiotics and xenobiotic substrates. Furthermore, the ability of different classes of cGST to recognize a wide repertoire of substrates due the variability in the substrate binding site of the enzymes makes them well suited for bioremediation purposes. cGSTs act as dehalogenases promoting a rapid degradation of various organochlorine compounds. Dehalogenation served as the primary mechanism for detoxification of various organochlorine compounds, making them vulnerable to attack by other degradative enzymes. However, despite their potential and advantage of wide substrate specificity, cGSTs have not been exploited for bioremediation purposes. In this review, we described the various cGST classes in bacteria and their phylogenetic relationships. Furthermore, the review reiterated that cGSTs in bacteria are involved in dehalogenation reaction, and this property can be harnessed for bioremediation of a diverse class of organochlorine pollutants as they currently represent the largest class of pollutants in the environment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.515-528,fig.,ref.

Twórcy

autor
  • Department of Biochemistry, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
  • Department of Biochemistry, Bayero University, Kano, Nigeria
autor
  • Department of Biochemistry, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
  • Department of Biochemistry, Bayero University, Kano, Nigeria
autor
  • Department of Biochemistry, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia

Bibliografia

  • 1. SIMARANI K., YUSOFF W.H.A.C., ALIAS Z. Purification of Glutathione Transferases (GSTs) from Identified Rhizospheric Bacteria. Sains Malays 45 (3), 1057, 2016.
  • 2. LONGKUMER T., PARTHASARATHY S., VEMURI S.G., SIDDAVATTAM D. OxyR-dependent expression of a novel glutathione S-transferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of organophosphate insecticides. Microbiology+ 160 (1), 102, 2014.
  • 3. PLANCARTE A., ROMERO J., NAVA G., REYES H., HERNÁNDEZ, M. Evaluation of the non-catalytic binding function of Ts26GST a glutathione transferase isoform of Taenia solium. Exp. Parasitol 138 (3), 63, 2014.
  • 4. MUNYAMPUNDU J-P., XU Y-P., CAI X-Z. Phi class of glutathione S-transferase gene superfamily widely exists in nonplant taxonomic groups. Evol. Bioinform. 12 (4), 59, 2016.
  • 5. ALLOCATI N., FEDERICI L., MASULLI M., DI ILIO C. Glutathione transferases in bacteria. Febs J. 276 (2), 75, 2009.
  • 6. GALL D.L., KIM H.L.U. F., DONOHUE T.J., NOGUERA D.R., RALPH J. Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway. J. Biol. Chem. 289 (12), 8656, 2014.
  • 7. PANDEY T., CHHETRI G., CHINTA R., KUMAR B., SINGH D.B., TRIPATHI T. Functional classification and biochemical characterization of a novel rho class glutathione S‐transferase in Synechocystis PCC 6803. Febs Open Bio. 5 (1), 1, 2015.
  • 8. SKOPELITOU K., DHAVALA P., PAPAGEORGIOU A.C., LABROU N.E. A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PloS One 7 (4), 34263, 2012.
  • 9. STOURMAN N.V., BRANCH M.C., SCHAAB M.R., HARP J.M., LADNER J.E., ARMSTRONG R.N. Structure and function of YghU, a nu-class glutathione transferase related to YfcG from Escherichia coli. Biochem. 50 (7), 1274, 2011.
  • 10. LIU L-Y., MA W-L., JIA H-L., ZHANG Z-F., SONG W-W., LI, Y-F. Research on persistent organic pollutants in China on a national scale: 10 years after the enforcement of the Stockholm Convention. Environ. Pollut. 217 (3), 70, 2016.
  • 11. ULFIK A., NOWAK S. Determinants of Municipal Waste Management in Sustainable Development of Regions in Poland. Polish J. Environ. Studies, 23, 3, 2014.
  • 12. JUGDER B.-E., ERTAN H., LEE M., MANEFIELD M., MARQUIS C.P. Reductive dehalogenases come of age in biological destruction of organohalides. Trends Biotechnol. 33 (4), 595, 2015.
  • 13. LARKIN M.A., BLACKSHIELDS G., BROWN N., CHENNA R., MCGETTIGAN P.A., MCWILLIAM H. Clustal W and Clustal X version 2.0. Bioinformatics 23 (21), 2947, 2007.
  • 14. SAITOU N., NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (4), 406, 1987
  • 15. ZUCKERKANDL E., PAULING L. Evolutionary divergence and convergence in proteins. Evolving genes and proteins 97 (3), 97, 1965.
  • 16. TAMURA K., STECHER G., PETERSON D., FILIPSKI A., KUMAR S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 (12), 2725, 2013.
  • 17. MASHIYAMA S.T., MALABANAN M.M., AKIVA E., BHOSLE R., BRANCH M.C., HILLERICH B. Largescale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol. 12 (4), 843, 2014.
  • 18. ALLOCATI N., FEDERICI L., MASULLI M., DI ILIO C. Distribution of glutathione transferases in Gram-positive bacteria and Archaea. Biochimie 94 (3), 588, 2012.
  • 19. SHEHU D., ALIAS Z. Functional Role of Tyr12 in the catalytic activity of Novel Zeta Like Glutathione S-Transferase from Acidovorax sp. KKS102. The protein journal 37 (3), 261, 2018.
  • 20. OAKLEY A.J. Glutathione transferases: new functions. Curr. Opin. Struct. Biol. 15 (6),716, 2005.
  • 21. BRENNAN E., MCGUINNESS M., DOWLING D.N. Bioinformatic analysis and in vitro site-directed mutagenesis of conserved amino acids in BphK LB400, a specific bacterial glutathione transferase. Int. Biodeter. Biodegra. 63, 928, 2009.
  • 22. DEPONTE M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, Biochim. Biophys. Acta. 1830, 3217, 2013.
  • 23. ROSSJOHN J., POLEKHINA G., FEIL S.C., ALLOCATI N., MASULLI M., DI ILIO C., PARKER M.W. A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure. 6, 721, 1998.
  • 24. N. ALLOCATI E., CASALONE M., MASULLI G., POLEKHINA J., ROSSJOHN M.W., PARKER D. Carmine, Evaluation of the role of two conserved active-site residues in Beta class glutathione S-transferases. Biochem. J. 351, 341, 2000.
  • 25. SCHOLTZ R., WACKETT L.P., EGLI C., COOK A.M., LEISINGER T. Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J. Bacteriol. 170 (12), 5698, 1988.
  • 26. FIRSOVA Y.E., FEDOROV D., TROTSENKO Y.A. Analysis of the 3′-region of the dcmA gene of dichloromethane dehalogenase of Methylobacterium dichloromethanicum DM4. Microbiology+. 80 (6), 805, 2011.
  • 27. MULLER E.E., BRINGEL F., VUILLEUMIER S. Dichloromethane-degrading bacteria in the genomic age. Res. Microbiol. 162 (9), 869, 2011.
  • 28. YU J., LIU Q., LIU L., CHEN J. Cloning and characterization of dichloromethane dehalogenase from Methylobacterium rhodesianum for dichloromethane degradation. Bioremediat. J. 21 (2), 71, 2017.
  • 29. BOARD G.P., BAKER T.R., CHELVANAYAGAM G., JERMIIN S.L. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem. J. 328 (3), 929, 1997.
  • 30. OZTETIK E., KOCKAR F., ALPER M., ISCAN M. Molecular characterization of zeta class glutathione S-transferases from Pinus brutia Ten. J. Genet. 94 (3), 417, 2015.
  • 31. JAMES M.O., JAHN S.C., ZHONG G., SMELTZ M.G., HU Z., STACPOOLE P.W. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacol. Therapeut. 170 (4), 166, 2017.
  • 32. YAMAMOTO K., SHIGEOKA Y., ASO Y., BANNO Y., KIMURA M., NAKASHIMA T. Molecular and biochemical characterization of a Zeta-class glutathione S-transferase of the Silkmoth. Pestic. Biochem. Physiol. 94 (1), 30, 2009.
  • 33. HABASH M., CHU B.C., TREVORS J.T., LEE H. Mutational study of the role of N-terminal amino acid residues in tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30. Res. Microbiol. 160 (8), 553, 2009.
  • 34. MARSH M., SHOEMARK D.K., JACOB A., ROBINSON C., CAHILL B., ZHOU N-Y. Structure of bacterial glutathione-S-transferase maleyl pyruvate isomerase and implications for mechanism of isomerisation. J. Mol. Biol. 384 (1), 165, 2008.
  • 35. FANG T., LI D-F., ZHOU N-Y. Identification and clarification of the role of key active site residues in bacterial glutathione S-transferase zeta/maleylpyruvate isomerase. Biochem. Bioph. Res. Co. 410 (3), 452, 2011.
  • 36. WIKTELIUS E., STENBERG G. Novel class of glutathione transferases from cyanobacteria exhibit high catalytic activities towards naturally occurring isothiocyanates. Biochem. J. 406 (1), 115, 2007.
  • 37. WADINGTON M.C., LADNER J.E., STOURMAN N.V., HARP J.M., ARMSTRONG R.N. Analysis of the structure and function of YfcG from Escherichia coli reveals an efficient and unique disulfide bond reductase. Biochemistry-US 48 (28), 6559, 2009.
  • 38. WARNER J.R., LAWSON S.L., COPLEY S.D. A Mechanistic Investigation of the Thiol− Disulfide Exchange Step in the Reductive Dehalogenation Catalyzed by Tetrachlorohydroquinone Dehalogenase. Biochemistry-US. 44 (30), 10360, 2005.
  • 39. Fortin P.D., Horsman G.P., Yang H.M., Eltis L.D. A glutathione S-transferase catalyzes the dehalogenation of inhibitory metabolites of polychlorinated biphenyls, Journal of bacteriology, 188, 4424, 2006.
  • 40. COPLEY S.D., ROKICKI J., TURNER P., DALIGAULT H., NOLAN M., LAND M. The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol. Evol. 4 (2), 184, 2011.
  • 41. CAO M., WANG L., AI Z., ZHANG L. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment. J. Hazard. Mater. 292, 27, 2015.
  • 42. YU J., SAVAGE P.E. Reaction pathways in pentachlorophenol synthesis. 1. Temperature-programmed reaction. Ind. Eng. Chem research. 43, 5021, 2004.
  • 43. LAL R., PANDEY G., SHARMA P., KUMARI K., MALHOTRA S., PANDEY R. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. MicrobioL. Mol. Biol. Rev. 74 (1), 58, 2010.
  • 44. SALAM J.A., DAS N. Remediation of lindane from environment-an overview. Int. J. Adv. Biol. Res. 2 (9), 15, 2012.
  • 45. LOPEZ-ECHARTEA E., MACEK T., DEMNEROVA K., UHLIK O. Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process. Int. J. Env. Res. Pub. He. 13 (11), 1146, 2016.
  • 46. SMARANDA C., BULGARIU L., ROSCA M., TURCULET R., GHINEA C., GAVRILESCU M. Evaluation of pentachlorophenol leaching potential in natural soils IEEE. 1, 4, 2015.
  • 47. MALISZEWSKA-KORDYBACH B., SMRECZAK B., KLIMKOWICZ-PAWLAS A. Evaluation of the Status of Contamination of Arable Soils in Poland with DDT and HCH Residues; National and Regional Scales. Polish J. Env. Stud. 23, 1, 2014.
  • 48. PIETSCH C., HOLLENDER J., DORUSCH, F., BURKHARDT-HOLM P. Cytotoxic effects of pentachlorophenol (PCP) and its metabolite tetrachlorohydroquinone (TCHQ) on liver cells are modulated by antioxidants. Cell Biol. Toxicol. 30, 233, 2014.
  • 49. DAMS R., PATON G., KILLHAM K. Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere. 68, 864, 2007.
  • 50. BOSSO L., CRISTINZIO G. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev. Env. Sc. Biotech. 13 (4), 387, 2014.
  • 51. CAMACHO-PÉREZ B., RÍOS-LEAL E., RINDERKNECHT-SEIJAS N., POGGI-VARALDO H.M. Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. J. Env. Manage. 95 (2), 306, 2012.
  • 52. FUSCOLETTI V., ACHENE L., GISMONDI, F., LAMARRA D., LUCENTINI L., SPINA S., VESCHETTI E., TURRIO-BALDASSARRI L. Presence of epsilon HCH together with four other HCH isomers in drinking water, groundwater and soil in a former Lindane production site. B. Environ. Contam. Tox. 95, 108, 2015.
  • 53. MEHTA P. Toxic Effect of Lindane on Male Reproductive Cells in Mammals. Int. J. Curr. Microbiol. App. Sci. 5 (3), 76, 2016.
  • 54. PRASAD W.V., SRILATHA C., SAILAJA N., RAJU N., JAYASREE N. Amelioration of Gamma-hexachlorocyclohexane (Lindane) induced renal toxicity by Camellia sinensis in Wistar rats. Vet. world 9 (11), 1331 2016.
  • 55. NAGATA Y., FUTAMURA A., MIYAUCHI K., TAKAGI M. Two Different Types of Dehalogenases, LinA and LinB, Involved in γ-Hexachlorocyclohexane Degradation in Sphingomonas paucimobilis UT26 Are Localized in the Periplasmic Space without Molecular Processing. J. Bacteriol. 81 (17), 5409, 1999.
  • 56. SANGWAN N., LATA P., DWIVEDI V., SINGH A., NIHARIKA N., KAUR J. Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 7 (9), 462, 2012.
  • 57. NAGATA Y., ENDO R., ITO M., OHTSUBO Y., TSUDA, M. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl. Microbiol. Biot. 76, 741, 2007.
  • 58. HEAP I. Herbicide resistant weeds. Integrated pest management: Springer: USA, 281, 2014.
  • 59. JABLONOWSKI N.D., SCHÄFFER A., BURAUEL P. Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environ. Sci. Pollut. Res. 18 (2), 328, 2011.
  • 60. KHAN A., SHAH N., KHAN M.S., AHMAD M.S., FAROOQ M., ADNAN M. Quantitative Determination of Lethal Concentration Lc 50 of Atrazine on Biochemical Parameters; Total Protein and Serum Albumin of Freshwater Fish Grass Carp (Ctenopharyngodon idella). Pol. J. Environ. Stud. 25 (4), 1555, 2016.
  • 61. GLASSMEYER S.T., FURLONG E.T., KOLPIN D.W., BATT A.L., BENSON R., BOONE J.S. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci. Total Environ. 581 (6), 909, 2017.
  • 62. STAYNER L.T., ALMBERG K., JONES R., GRABER J., PEDERSEN M., TURYK M. Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. Environ. Res. 152, 294, 2017.
  • 63. SMITH D., ALVEY S., CROWLEY D.E. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. Fems Microbiol. Ecol. 53 (2), 265, 2005.
  • 64. DEVERS-LAMRANI M., SPOR A., MOUNIER A., MARTIN-LAURENT F. Draft genome sequence of Pseudomonas sp. strain ADP, a bacterial model for studying the degradation of the herbicide atrazine. Genome announcements 4 (1), 1733, 2016.
  • 65. NOOR S., CHANGEY F., OAKESHOTT J.G., SCOTT C., MARTIN-LAURENT F. Ongoing functional evolution of the bacterial atrazine chlorohydrolase AtzA. Biodegradation 25 (1), 21, 2014.
  • 66. STELTING S.A., BURNS R.G., SUNNA A., BUNT C.R. Survival in sterile soil and atrazine degradation of Pseudomonas sp. strain ADP immobilized on zeolite. Bioremediat. J. 18 (4), 309, 2014.
  • 67. BOOPATHY R. Anaerobic degradation of atrazine. Int. Biodeter. Biodegr. 119 (8), 626, 2017.
  • 68. DE SOUZA M., WACKETT L.P., BOUNDY-MILLS K.L., MANDELBAUM R.T., SADOWSKY M.J. Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine. Appl. Environ. Microbiol. 61, 3373, 1995.
  • 69. KOLIĆ N.U., HRŠAK D., KOLAR A.B., PETRIĆ I., STIPIČEVIC S., SOULAS G., MARTIN-LAURENTF. Combined metabolic activity within an atrazine-mineralizing community enriched from agrochemical factory soil. Int. Biodeter. Biodegr. 60, 299, 2007.
  • 70. MCGUINNESS M., MAZURKIEWICZ V., BRENNAN E., DOWLING D. Dechlorination of Pesticides by a Specific Bacterial Glutathione S‐transferase, BphKLB400: Potential for Bioremediation. Eng. Life Sci. 7 (6), 611, 2007.
  • 71. NJOKU V., ASIF M., HAMEED B. 2, 4-Dichlorophenoxyacetic acid adsorption onto coconut shell-activated carbon: isotherm and kinetic modeling. Desalin. Water Treat. 55 (1), 132, 2015.
  • 72. BUKOWSKA B. Toxicity of 2, 4-Dichlorophenoxyacetic Acid-Molecular Mechanisms. Polish J. Environ. Stud. 15, 3, 2006.
  • 73. LOOMIS D., GUYTON K., GROSSE Y., EL GHISSASI F., BOUVARD V., BENBRAHIM-TALLAA L., GUHA N., MATTOCK H., STRAIF K. Carcinogenicity of lindane, DDT, and 2, 4-dichlorophenoxyacetic acid. Lancet Oncol. 16, 891, 2015.
  • 74. SCHLOSSER P.M., BALE A.S., GIBBONS C.F., WILKINS A., COOPER G.S. Human health effects of dichloromethane: key findings and scientific issues. Env. Health Persp. 123 (2), 114, 2015.
  • 75. BALE A.S., BARONE S., SCOTT C.S., COOPER G.S. A review of potential neurotoxic mechanisms among three chlorinated organic solvents. Toxicol. App. Pharmacol. 255 (1), 113, 2011.
  • 76. COOPER G.S., SCOTT C.S., BALE A.S. Insights from epidemiology into dichloromethane and cancer risk. Int. J. Env. Res. Pub. He. 8 (8), 3380, 2011.
  • 77. BENBRAHIM-TALLAA L., LAUBY-SECRETAN B., LOOMIS D., GUYTON K.Z., GROSSE Y., EL GHISSASSI F., BOUVARD V., GUHA N., MATTOCK H., STRAIF K. Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1, 2-dichloropropane, and 1, 3-propane sultone. Lancet Oncol. 15, 924, 2014.
  • 78. STOURMAN N.V., ROSE J.H., VUILLEUMIER S., ARMSTRONG R.N. Catalytic mechanism of dichloromethane dehalogenase from Methylophilus sp. strain DM11. Biochemistry. 42, 11048, 2003.
  • 79. GISI D., WILLI L., TRABER H., LEISINGER T., VUILLEUMIER S. Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane Appl. Env. Microbiol. 64, 1194, 1998.
  • 80. BLOCKI F., LOGAN M., BAOLI C., WACKETT L. Reaction of rat liver glutathione S-transferases and bacterial dichloromethane dehalogenase with dihalomethanes. J. Biol. Chem. 269, 8826, 1994.
  • 81. KANKOTIA S., STACPOOLE P.W. Dichloroacetate and cancer: new home for an orphan drug? Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1846 (2), 617, 2014.
  • 82. LI W., GU Y., JAMES M.O., HINES R.N., SIMPSON R.N., LANGAEE T., STACPOOLE P.W. Prenatal and postnatal expression of glutathione transferase ζ 1 in human liver and the roles of haplotype and subject age in determining activity with dichloroacetate, Drug Metab. Dispos. 40, 232, 2012.
  • 83. TONG Z., BOARD P.G., ANDERS M. Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other α-haloacids. Chem. Res. Toxicol. 11, 1332, 1998.
  • 84. HE W., BAI Z.L., LIU W.X., KONG X.Z., YANG B., YANG C. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu). Env. Sci. Pollut. Res. 23 (11), 10335, 2016.
  • 85. ZHENG T., HOLFORD T.R., TESSARI J., MAYNE S.T., OWENS P.H., WARD B., CARTER D., BOYLE P., DUBROW R., ARCHIBEQUE-ENGLE S. Breast cancer risk associated with congeners of polychlorinated biphenyls. Am. J. Epidemiolo 152, 50, 2000.
  • 86. LEHMANN G.M., CHRISTENSEN K., MADDALONI M., PHILLIPS L.J. Evaluating health risks from inhaled polychlorinated biphenyls: research needs for addressing uncertainty. Environ. Health Persp. 123, 109, 2015.
  • 87. WANG S., CHNG K.R.,WILM A., ZHAO S., YANG K.-L., NAGARAJAN N., HE J. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. PNAS. 111, 12103, 2014.
  • 88. JARACZEWSKA K., LULEK J., COVACI A., VOORSPOELS S., KALUBA-SKOTARCZAK A., DREWS K., SCHEPENS P. Distribution of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers in human umbilical cord serum, maternal serum and milk from Wielkopolska region, Poland. Sci. Total Environ. 372, 20, 2006.
  • 89. LAUBY-SECRETAN B., LOOMIS D., GROSSE Y., EL GHISSASSI F., BOUVARD V., BENBRAHIM-TALLAA L., GUHA N., BAAN R., MATTOCK H., STRAIF K. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncolol. 14, 287, 2013.
  • 90. LI M.C., CHEN P.C., TSAI P.C., FURUE M., ONOZUKA D., HAGIHARA A. Mortality after exposure to polychlorinated biphenyls and polychlorinated dibenzofurans: A meta‐analysis of two highly exposed cohorts. Int. J. Cancer 137 (6), 1427, 2015.
  • 91. TEHRANI R., VAN AKEN B. Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities. Env. Sci. Pollut. Res. 21 (10), 6334, 2014.
  • 92. FIEDLER H. National PCDD/PCDF release inventories under the Stockholm convention on persistent organic pollutants. Chemosphere. 67, 96, 2007.
  • 93. ABRAHAM W.R., NOGALES B., GOLYSHIN P.N., PIEPER D.H., TIMMIS K.N. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr. Opin. Microbiol. 5, 246, 2002.
  • 94. AHUJA R., KUMAR A. Metabolism of DDT [1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane] by Alcaligenes denitrificans ITRC-4 under aerobic and anaerobic condition. Curr. Microbiol. 46, 65, 2003.
  • 95. HIRAOKA Y,. YAMADA T., TONE K., FUTAESAKU Y., KIMBARA K. Flow cytometry analysis of changes in the DNA content of the polychlorinated biphenyl degrader Comamonas testosteroni TK102: effect of metabolites on cell-cell separation. Appl. Environ. Microbiol. 68, 5104, 2002.
  • 96. SEEGER M., PIEPER D. Genetics of biphenyl biodegradation and co-metabolism of PCBs. Handbook of hydrocarbon and Lipid Microbiology: Springer: USA, 1179, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9a9badda-59d9-4302-a15b-3ab60150393d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.