Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 4 |
Tytuł artykułu

Effect of material on hydro-elastic behaviour of marine propeller by using BEM-FEM hybrid software

Warianty tytułu
Języki publikacji
This paper studies the effect of material on the hydro-elastic behaviour. The geometry of flexible propeller changes due to hydrodynamic and inertial forces acting on the propeller. By using prepared software (called HYDRO-BEM and ELASTIC-FEM) the hydro-elastic features of the propeller made of various materials are analyzed. In the software the hybrid boundary element and finite element methods are used. First, the load acting on the propeller is determined by using the BEM and deformed propeller geometry is then obtained by the FEM. In the next step, the load on the deformed propeller is determined by the BEM and a new shape is obtained. The iterative procedure is repeated till the blade deflection and hydrodynamic characteristics (thrust, torque and efficiency) of the propeller become converged. Four different materials are examined. It is concluded that the hydro-elastic behaviour of the composite propeller is strongly affected by its flexibility due to light material
Słowa kluczowe
Opis fizyczny
  • Department of Ocean Engineering, Amirkabir University of Technology, Teheran, Iran
  • Marine Industry Research Centre, Amirkabir University of Technology, Teheran, Iran
  • Vehicle Technology Research Institute, Amirkabir University of Technology, Teheran, Iran
  • 1. Sontvedt, T.: Propeller blade stress application of finite element methods. Computers & Structures, Vol. 4, pp. 193-204, 1974.
  • 2. Young, Y.L.: Hydro-elastic behaviour of the flexible composite propeller in wake inflow. 16th conf. on composite materials, Kyoto, Japan, 2007.
  • 3. Young, Y.L.: Fluid-structure interaction analysis of flexible composite marine propellers. Journal of Fluids and Structures, Vol. 24, 799–818, 2008.
  • 4. Blasques, J. P., Berggreen C., Poul Andersen, P.: Hydro-elastic analysis and optimization of a composite marine propeller. Marine structure, Vol. 23, 2010.
  • 5. Lin H. J., Lai W. M., Kuo, Y. M.: Effect of stacking sequence on nonlinear hydro-elastic behaviour of composite propeller. Journal of Mechanics, Vol. 26, No. 3, September 2010.
  • 6. Mulcahy, N. L. and Prusty B. G. and Gardiner C. P.: Hydroelastic tailoring of flexible composite propellers. Ships and Offshore Structures, Vol. 5, No. 4, 359–370, 2010.
  • 7. Chau, T. B.: 2-D versus 3-D stress analysis of a marine propeller blade. Zeszyty Naukowe Akademii Morskiej w Gdyni, No. 64, July 2010.
  • 8. Koronowicz, T., Krzemianowski, Z., Tuszkowska, T., Szantyr, J.A.: A complete design of ship propellers using the new computer system. Polish Maritime Research, Vol. 16, No. 1 (59); pp.29-34, 2009.
  • 9. Ghassemi, H., Ghadimi, P.,: Computational hydrodynamic analysis of the propeller-rudder and the AZIPOD systems. Ocean Engineering, Vol. 34, pp.117-130, 2007.
  • 10. Ghassemi, H.: The Effect of Wake Flow and Skew Angle on the Ship Propeller Performance. Scientia Iranica, Vol. 16, No. 2, pp.149-158, 2009.
  • 11. Ghassemi, H.: Hydrodynamic performance of coaxial contrarotating propeller (CCRP) for large ships. Polish Maritime Research, Vol. 16, No. 1 (59), pp.22-28, 2009.
  • 12. Ghassemi, H.: Hydrodynamic characteristics of the surfacepiercing propellers for the planing craft. J. Marine Sci. Appl., Vol. 7, pp.147-156, 2008.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.