PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 79 |

Tytuł artykułu

Assessment of the height stability in progeny of Fagus sylvatica L. populations using the GGE biplot method

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Forecasted climate changes demand selection of populations (seed stands) and genotypes (plus trees) best adapted to changing environmental conditions and displaying limited genotype × environment (G×E) interaction. Analysis of multi-environment trials (METs) allows to recognize differences between populations and environments, as well as G×E interaction. To define stability of tree height we used a GGE biplot graphic method based on the results of measurement of 5- and 10-year-old trees originating from 30 European beech populations tested at three experimental sites. Majority of variance was explained in terms of the impact of environment. The studied environments were characterised by a similar discriminating ability and representativeness of growth conditions. Two mega-environments were identified as the studied populations of beech differed in their adaptation to local growth conditions. The analysed set of populations included those growing particularly well under the specific environmental conditions, and others displaying more general adaptability. The GGE biplot method is useful in breeding of forest trees.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

79

Opis fizyczny

p.34–46,fig.,ref.

Twórcy

Bibliografia

  • Aitken SN, Yeaman S, Holliday JA, Wang T & Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1: 95–111. doi:10.1111/j.1752-4571.2007.00013.x.
  • Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R & Savolainen O (2013) Potential for evolutionary responses to climate change – evidence from tree populations. Global Change Biology 19: 1645–1661. doi:org/10.1111/gcb.12181.
  • Annicchiarico P (2002) Genotype x environment interactions. Challenges and opportunities for plant breeding and cultivar recommendations. FAO, Rome. Plant Production and Protection Paper 174.
  • Baltunis BS, Gapare WJ & Wu HX (2010) Genetic parameters and genotype by environment interaction in Radiata pine for growth and wood quality traits in Australia. Silvae Genetica 59: 113–124.
  • Barzdajn W (2009) Adaptacja i początkowy wzrost potomstwa drzewostanów nasiennych buka zwyczajnego (Fgus sylvatica L.) na uprawach porównawczych w nadleśnictwach Złotoryja i Lądek Zdrój. Leśne Prace Badawcze 70: 101–111.
  • Bolte A, Czajkowski T, Cocozza C, Tognetti R, de Miguel M, Pšidová E, Ditmarová ´L, Dinca L, Delzon S, Cochard H, Ræbild A, de Luis M, Cvjetkovic B, Heiri C & Müller J (2016) Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions. Frontiers in Plant Science 7: 751. doi:10.3389/fpls.2016.00751.
  • Boratyńska K & Boratyński A (1990) Systematyka i geograficzne rozmieszczenie: Buk zwyczajny Fagus syvatica L. Nasze drzewa leśne (ed. by S Białobok) Monografie Popularnonaukowe. PWN, Warszawa – Poznań, pp. 27–73.
  • Buraczyk W, Szeligowski H, Studnicki M, Drozdowski S & Bielak K (2016) Multivariable evaluation of the early growth performance of European beech (Fagus sylvatica L.) provenances from south−eastern Poland. Sylwan 160: 981–992.
  • Correia I, Al´ia R, Yan W, David T, Aguiar A & Almeida MH (2010) Genotype × Environment interactions in Pinus pinaster at age 10 in a multi-environment trial in Portugal: a maximum likelihood approach. Annals of Forest Science 67: 612. doi:10.1051/forest/2010025.
  • Crossa J (1990) Statistical analyses of multilocation trials. Advances in Agronomy 44: 55–85. doi:10.1016/S0065-2113(08)60818-4.
  • DeLacy IH, Basford KE, Cooper M & Bull JK (1996) Analysis of multi-environment trials — an historical perspective. Plant adaptation and crop improvement (ed. by M Cooper & GL Hammer) CAB International, pp. 39–124.
  • Ding M, Tier B, Yan W, Wu HX, Powell MB & McRae TA (2008) Application of GGE biplot analysis to evaluate Genotype (G), Environment (E), and G×E interaction on Pinus radiata: a case study. New Zealand Journal of Forestry Science 38: 132–142.
  • Dzwonko Z (1990) Ekologia: Buk zwyczajny Fagus syvatica L. Nasze drzewa leśne (ed. by S Białobok) Monografie Popularnonaukowe. PWN, Warszawa – Poznań, pp. 27–73.
  • Finlay KW & Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research 14: 742–754. doi:10.1071/AR9630742.
  • Fonder W, Matras J & Załęski A (2007) Leśna baza nasienna w Polsce. CILP, Warszawa.
  • Gauch GH & Zobel RW (1997) Identifying mega-environments and targeting genotypes. Crop Science 37: 311–326.
  • Giertych M (1982) Breeding strategies with Norway spruce in Poland. Proc. of the IUFRO joint meeting of working parties on genetics about breeding strategies incl. multi-clonal varietes. Sensenstein, pp. 17–21.
  • Giertych M (1990) Genetyka: Buk zwyczajny (Fagus sylvatica L.) Nasze drzewa leśne (ed. by S Białobok) Monografie Popularnonaukowe, PWN, Warszawa – Poznań, pp. 193–236.
  • Giertych M (2000) Zmienność genetyczna buka. Zeszyty Naukowe Akademii Rolniczej im. H. Kołłątaja w Krakowie 69: 35–45.
  • Golub GH & Reinsch C (1971) The singular value decomposition and least squares solutions. Handbook for Automatic Computation (ed. by JH Wilkinson & C Renisch) Springer-Verlag Berlin, pp. 134–151.
  • Hocking RR & Speed FM (1975) A full-rank analysis of some linear model problems. Journal of the American Statistical Association 70: 706–712.
  • Ivanković M, Bogdan S & Božič G (2008) Varijabilnost visinskog rasta obične bukve (Fagus sylvatica L.) u testovima provenijencija u Hrvatskoj I Sloveniji. Šumarski list 11/12: 529–541.
  • Kang MS (1990) Understanding and utilization of genotype-by-environment interaction in plant breeding: Genotype-by-environment interaction and plant breeding (ed. by MS Kang) Baton Rouge, Louisiana State University Agricultural Center, pp. 52–68.
  • Kang MS & Gauch GH (1996) Genotype-by-environment interaction. CRC Press, Boca Raton, FL.
  • Khattree R & Naik DN (2000) Multivariate data reduction and discrimination with SAS software. SAS Institute Inc., Cary, NC.
  • Klisz M, Jastrzębowski Sz, Ukalski K, Ukalska J & Przybylski P (2017) Adaptation of Norway spruce populations in Europe: A case study from northern Poland. New Zealand Journal of Forestry Science 47: 8. doi:10.1186/s40490-017-0090-6.
  • Krahl-Urban J (1958) Vorläuftige Ergebnisse von Buchen Provenienzversuchen. Allgemeine Forst-und Jagdzeitung 129: 245–251.
  • Littell RC, Milliken GA, Stroup WW & Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc., Cary, NC.
  • McKeand SE, Li B, Hatcher AV & Wei RJ (1990) Stability parameter estimates for stem volume for loblolly pine families growing in different regions in the southeastern United States. Forest Science 36: 10–17.
  • Murillo O (2001) Genotype by environment interaction and genetic gain on unbalanced Pinus oocarpa provenances trials. Agronomia Costarricense 25: 21–32.
  • Piepho HP (1997) Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics 53: 761–766.
  • Raport o lasach (2014) CILP, Warszawa.
  • Rodrigues PC, Mejza S & Mexia JT (2008) Structuring genotype × environment interaction — an overview. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 250: 41–57.
  • Sabor J (1999) Kierunki badań genetycznych drzew leśnych w doświadczalnictwie leśnym: Stan i perspektywy badań z zakresu hodowli lasu (ed. by A Gorzelak & T Zachara) Materiały I Konferencji Leśnej, Sękocin Las, 18 – 19 maja 1999, Warszawa, pp. 133–138.
  • Saxton AM (2004) Genetic analysis of complex traits using SAS. SAS Institute, Inc. Cary, N.C.
  • SAS Institute Inc (2013) SAS/STAT 13.1 User’s Guide. SAS Institute Inc., Cary, North Carolina.
  • Sixto H, Gil PM, Ciria P, Camps F, Cañellas I & Voltas J (2015) Interpreting genotype-by-environment interaction for biomass production in hybrid poplars under short-rotation coppice in Mediterranean environments. GCB Bioenergy 8: 1124–1135. doi:10.1111/gcbb.12313.
  • Stojnić S, Orlović S, Ballian D, Ivanković M, Šijačić-Nikolić M, Pilipowić A, Bogdan S, Kvesić S, Mataruga M, Daničić V, Cvejtković B, Miljković D & von Wuehlisch G (2015) Provenance by site interaction and stability analysis of European beech (Fagus sylvatica L.) provenances grown in common garden experiments. Silvae Genetica 64: 133–147.
  • Szeligowski H (2012) Zmienność oraz wartość hodowlana populacji buka zwyczajnego w warunkach siedliskowych centralnej Polski. Wydawnictwo SGGW, Warszawa.
  • Taibi K (2014) Integrated approach for addressing assisted population migration programs in forest management to climate change: out-planting performance, genotype by environment interactions, physiological and molecular response. Dissertation. The Polytechnic University of Valencia, Spain.
  • Tarasiuk S (1992) Recent anthropogenous distribution of European Beech outside its natural Range in Pland. Folia Forestalia Polonica Series A-Forestry 34: 31–38.
  • Teissier du Cros E (1977) Étude da la viaribilité du hêtre. Revue Forestière Française 29: 355–362.
  • Ukalski K, Śmiałowski T & Ukalska J (2010a) Analysis of oat yield environments using graphical GGE method. Colloquium Biometricum 40: 81–93.
  • Ukalski K, Śmiałowski T & Ukalska J (2010b) Analiza plonowania i stabilności genotypów owsa za pomocą metody graficznej typu GGE. Żywność. Nauka. Technologia. Jakość. 3: 127–140.
  • Ukalski K & Klisz M (2016) Application of GGE biplot graphs in multi-environment trials on selection of forest trees. Folia Forestalia Polonica Series A-Forestry 58: 228–239. doi:10.1515/ffp-2016-0026.
  • Walck JL, Hidayati SN, Dixon KW, Thompson K & Poschlod P (2011) Climate change and plant regeneration from seed. Global Change Biology 17: 2145–2161. doi:10.1111/j.1365-2486.2010.02368.x.
  • Wüehlisch von G (2004) Series of international provenance trials of European beech: Improvement and silviculture of beech. Proceedings from the 7th international beech symposium IUFRO research group 1.10.00, 10 – 20 May 2004, Teheren, Iran, pp. 135–144.
  • Wüehlisch von G, Hansen JK, Mertens P, Lesebach M, Meierjohann E, Muhs HJ, Teissier du Cros E & de Vries S (2008) Variation among Fagus sylvatica and Fagus orientalis provenances in young international field trials: Proceedings the 8th IUFRO International Beech Symposium, 8 – 13 September 2008, Nanae, Hokkaido, Japan, pp. 25–27.
  • Yan W, Hunt LA, Sheng Q & Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40: 597–605. doi:10.2135/cropsci2000.403597x.
  • Yan W & Hunt LA (2001) Interpretation of genotype x environment interaction for winter wheat yield in Ontario. Crop Science 41: 19–25. doi:10.2135/cropsci2001.41119x.
  • Yan W, Cornelius PL, Crossa J & Hunt LA (2001) Two types of GGE biplots for analyzing multienvironment trial data. Crop Science 41: 656–663. doi:10.2135/cropsci2001.413656x.
  • Yan W & Rajcan I (2002) Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science 42: 11–20. doi:10.2135/cropsci2002.1100.
  • Yan W & Kang MS (2002) GGE biplot analysis: a graphical tool for breeders, genetics and agronomists. CRC Press, Boca Raton, FL.
  • Yeiser JL, Lowe W & van Buijtenen JP (2001) Stability and seed movement for loblolly pine in the Western Gulf Region. Silvae Genetica 50: 81–88.
  • Zhao X, Xia H, Wang X, Wang C, Liang D & Li K (2016) Variance and stability analyses of growth characters in half-sib Betula platyphylla families at three different sites in China. Euphytica 208: 173–186. doi:10.1007/s10681-015-1617-7.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9a606cfc-1a21-4b31-9ec8-21024ad36679
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.