PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Interspecific competition for nutrients between submerged macrophytes (Vallisneria natans, Ceratophyllum demersum) and filamentous green algae (Cladophora oligoclona) in a Co-culture system

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The excessive proliferation of filamentous green algae (FGA) has been considered to be one of the important factors that result in poor growth or even a decline in submerged macrophytes. This study aims to investigate why FGA has stronger growth advantage than that of submerged macrophytes in the co-culture system. Assimilation of nitrogen and phosphorus nutrients, kinetics, and interspecific nutrient competition model were studied to determine the dynamic changes in nutrient assimilation between submerged macrophytes and FGA in a co-culture system with ion depletion technique. The results showed that differences were observed in the assimilation of nitrogen and phosphorus by Vallisneria natans, Ceratophyllum demersum, and Cladophora oligoclona. C. oligoclona was able to assimilate and accumulate much more nitrogen than V. natans and C. demersum, with the content of nitrogen of 5.75% (dry mass). The lower value of Michaelis-Menten constant Km (0.34 mg/L) of C. demersum indicated that C. demersum had a greater affinity for phosphate. The interspecific competition results confirmed that the coexistence of V. natans and C. oligoclona, and C. demersum and C. oligoclona were unstable. Moreover, C. demersum had a stronger competitive ability than V. natans, and it can be used as a pioneer species for the recovery of submerged vegetation in eutrophic lakes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1483-1494,fig.,ref.

Twórcy

autor
  • School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China

Bibliografia

  • 1. Stefanidis K., Papastergiadou E. Influence of hydrophyte abundance on the spatial distribution of zooplankton in selected lakes in Greece. Hydrobiologia. 656 (1), 55, 2010.
  • 2. Hernández-Crespo C., Oliver N., Bixquert J., Gargallo S., Martín M. Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia. 774 (1), 183, 2016.
  • 3. Ji G., Xu Z.X., Wang L.Q. Effects of floating-leaved macrophytes on water quality and phytoplankton: an in situ experiment in a Chinese shallow lake. Desalination and Water Treatment, 57 (57), 27519, 2016.
  • 4. Bakker E.S, Van Donk E., Declerck, S.A.J., Helmsing N.R., Hidding B., Nolet B.A. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic and Applied Ecology. 11, 432, 2010.
  • 5. Pikosz M., Messyasz B. Composition and seasonal changes in filamentous algae in floating mats. Oceanological and Hydrobiological Studies. 44 (2), 273, 2015.
  • 6. Lee Y.C., Chang S.P. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource technology. 102 (9), 5297, 2011.
  • 7. Pochon X., Atalah J., Wood S.A., Hopkins G.A., Watts A., Boedeker C. Cladophora ruchingeri (C. Agardh) Kützing, 1845 (Cladophorales, Chlorophyta): a new biofouling pest of green-lipped mussel Perna canaliculus (Gmelin, 1791) farms in New Zealand. Aquatic Invasions. 10 (2), 123, 2015.
  • 8. Brooks C., Grimm A., Shuchman R., Sayers M., Jessee N. A satellite-based multi-temporal assessment of the extent of nuisance Cladophora and related submerged aquatic vegetation for the Laurentian Great Lakes. Remote Sensing of Environment. 157, 58, 2015.
  • 9. Higgins S.N., Hecky R.E., Guildford S.J. The collapse of benthic macroalgal blooms in response to self-shading. Freshwater Biology. 53, 2557, 2008.
  • 10. Gubelit Y.L., Berezina N.A. The causes and consequences of algal blooms: the Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Marine Pollution Bulletin. 61, 193, 2010.
  • 11. Ye N.H., Zhang X.W., Mao Y. Z., Liang C.W., Xu D., Zou J., Zhuang Z.M., Wang Q.Y. ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecological Research. 26, 477, 2011.
  • 12. Rodrigo M.A., Rojo C., Alonso-Guillén J.L., Vera P. Restoration of two small Mediterranean lagoons: the dynamics of submerged macrophytes and factors that affect the success of revegetation. Ecological engineering. 54, 1, 2013.
  • 13. Gao L., Zhang L., Hou J., Wei Q., Fu F., Shao H. Decomposition of macroalgal blooms influences phosphorus release from the sediments and implications for coastal restoration in Swan Lake, Shandong, China. Ecological engineering. 60, 19, 2013.
  • 14. Hauxwell J., Cebrián J., Furlong C., Valiela I. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology. 82 (4), 1007, 2001.
  • 15. Schmidt A.L., Wysmyk J.K., Craig S.E., Lotze, H.K. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnology and Oceanography. 57 (5), 1389, 2012.
  • 16. Kors A., Vilbaste S., Kairo K., Pall P., Piirsoo K., Truu J., Viik M. Temporal changes in the composition of macrophyte communities and environmental factors governing the distribution of aquatic plants in an unregulated lowland river (Emajõgi, Estonia). Boreal Environment Research. 17 (6), 460, 2012.
  • 17. Moss B., Jeppesen E., Søndergaard M., Lauridsen T.L., Liu Z. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia. 710, 3, 2013.
  • 18. Ozimek T., Pieczyńska E., Hankiewicz A. Effects of filamentous algae on submerged macrophyte growth: a laboratory experiment. Aquatic Botany. 41 (4), 309, 1991.
  • 19. Tilman D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology. 58, 338, 1977.
  • 20. Li Y., Wang Y., Tang C., Anim D.O., Ni L., Yu Z., Acharya K. Measurements of Erosion Rate of Undisturbed Sediment under Different Hydrodynamic Conditions in Lake Taihu, China. Polish Journal of Environmental Studies. 23 (4), 1235, 2014.
  • 21. Yu Q., Wang H.Z., Li Y., Shao J.C., Liang X.M., Jeppesen E., Wang H.J. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations. Water research. 83, 385, 2015.
  • 22. Jensen K.B., Harrison P., Chatterton N.J., Bushman B.S., Creech J.E. Seasonal trends in nonstructural carbohydrates in cool-and warm-season grasses. Crop Science. 54 (5), 2328, 2014.
  • 23. Xie D., Zhou H., Ji H., Chen Y., An S. Effects of buoyancy and season on turion dispersal of submerged macrophyte Potamogeton crispus L. CLEAN–Soil, Air, Water. 43, 324, 2015.
  • 24. Nicklisch A. The interaction of irradiance and temperature on the growth rate of Limnothrix redekei and its mathematical description. Archiv für Hydrobiologie. Supplementband. Untersuchungen des Elbe-Aestuars. 91, 1, 1992.
  • 25. Wang X.K. Principles and techniques of plant physiological biochemical experiment (2nd Edition), Higher Education Press.pp.202-207, 2006. (in Chinese).
  • 26. Ministry of Environmental Protection of the PRC. Determination methods for examination of water and wastewater. Beijing: China Environmental Science Press, pp. 243, 2002 [Iin Chinese].
  • 27. Wen L., Hua C.L., Ping Z.Y., Xiang L.Z. Removal of Total Phosphorus from Septic Tank Effluent by the Hybrid Constructed Wetland System. Procedia Environmental Sciences. 10, 2102, 2011.
  • 28. Epstein E., Hagen C.E. A Kinetic study of the absorption of alkali cations by barley roots. Plant Physiology. 27, 457, 1952.
  • 29. Jiang T.H., Zheng S.J., Shi J.H., Hu A.T., Shi R.H., Xu M. Several considerations in kinetic research on nutrients uptake by plants. Plant nutrition and fertilizer sciences. 1, 11, 1995 [Iin Chinese].
  • 30. Li J., Yang X., Wang Z., Shan Y., Zheng Z. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water. Bioresource technology. 179, 1, 2015.
  • 31. Zhou X., Wang G., Yang F. Characteristics of growth, nutrient uptake, purification effect of Ipomoea aquatica, Lolium multiflorum, and Sorghum sudanense grown under different nitrogen levels. Desalination. 273 (2), 366, 2011.
  • 32. Dunn J., McArthur L., Schreider S. Plant biomass and nutrient dynamics: modelling blooming phenomenon. In Sustaining our Future: understanding and living with uncertainty, The 19th International Congress on Modelling and Simulation (MODSIM2011). Modelling and Simulation Society of Australia and New Zealand. 3698, 2011.
  • 33. Tubay J.M., Ito H., Uehara T., Kakishima S., Morita S., Togashi T., Tainaka K., Niraula M.P., Casareto B.E., Suzuki Y., Yoshimura J. The paradox of enrichment in phytoplankton by induced competitive interactions. Scientific Reports. 3 (3), 2835, 2013.
  • 34. Sun G.W., Cui Q.W., Song B. A new mathematical model of interspecific competition - an expansion of the classical Lotka-Volterra competition equations. Ecological modelling. 58, 273, 1991.
  • 35. Wang B., Shen Q. Effects of ammonium on the root architecture and nitrate uptake kinetics of two typical lettuce genotypes grown in hydroponic systems. Journal of plant nutrition. 35 (10), 1497, 2012.
  • 36. Lemley D.A., Snow G.C., Human L.R.D. The decomposition of estuarine macrophytes under different temperature regimes. Water SA. 40 (1), 117, 2014.
  • 37. Human L.R., Snow G.C., Adams J.B., Bate G.C., Yang S.C. The role of submerged macrophytes and macroalgae in nutrient cycling: A budget approach. Estuarine, Coastal and Shelf Science. 154, 169, 2015.
  • 38. Lenzi M., Gennaro P., Mercatali I., Persia E., Solari D., Porrello S. Physico-chemical and nutrient variable stratifications in the water column and in macroalgal thalli as a result of high biomass mats in a non-tidal shallow-water lagoon. Marine pollution bulletin. 75 (1), 98, 2013.
  • 39. Nowak H., Harvey T.H., Liu H.P., McKay R.M., Zippi P.A., Campbell D.H., Servais T. Filamentous eukaryotic algae with a possible cladophoralean affinity from the Middle Ordovician Winneshiek Lagerstätte in Iowa, USA. Geobios. 50 (4), 303, 2017.
  • 40. Martínez B., Pato L.S., Rico J.M. Nutrient uptake and growth responses of three intertidal macroalgae with perennial, opportunistic and summer-annual strategies. Aquatic botany. 96 (1), 14, 2012.
  • 41. Pietro K.C., Chimney M.J., Steinman A.D. Phosphorus removal by the Ceratophyllum /periphyton complex in a south Florida (USA) freshwater marsh. Ecological Engineering. 27 (4), 290, 2006.
  • 42. Song M., Li M., Liu J. Uptake Characteristics and Kinetics of Inorganic and Organic Phosphorus by Ceratophyllum demersum. Water, Air, & Soil Pollution. 228 (11), 407, 2017.
  • 43. Tang Y., Harpenslager S.F., van Kempen M.M., Verbaarschot E.J., Loeffen L.M., Roelofs J.G., Lamers L.P. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands. Biogeosciences. 14 (4), 755, 2017.
  • 44. Dai Y., Wu J., Ma X., Zhong F., Cui N., Cheng S. Increasing phytoplankton-available phosphorus and inhibition of macrophyte on phytoplankton bloom. Science of the Total Environment. 579, 871, 2017.
  • 45. Kadlec R.H., Knight R.L. Treatment Wetlands. Lewis Publisher, Boca Raton, FL, USA, 893, 1996.
  • 46. Gérard J., Brion N., Triest L. Effect of water column phosphorus reduction on competitive outcome and traits of Ludwigia grandiflora and L. peploides, invasive species in Europe. Aquatic Invasions. 9 (2), 157, 2014.
  • 47. Xie D., Yu D., You W. H., Wang L.G. Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: A mesocosm study on different species. Chemosphere. 93 (7), 1301, 2013.
  • 48. Duan B., Dong T., Zhang X., Zhang Y., Chen J. Ecophysiological responses of two dominant subalpine tree species Betula albo-sinensis and Abies faxoniana to intra- and interspecific competition under elevated temperature. Forest ecology and management. 323, 20, 2014.
  • 49. Bornette G., Puijalon S. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences. 73, 1, 2011.
  • 50. Irfanullah H.M., Moss B. Allelopathy of filamentous green algae. Hydrobiologia. 543, 169, 2005.
  • 51. Kumar M., Kumari P., Reddy C.R.K., Jha, B. Salinity and desiccation induced oxidative stress acclimation in seaweeds. Sea Plants. 71, 91, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-995f81c4-02bf-4629-bf52-997323b2c630
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.