PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 2 |

Tytuł artykułu

Physiological, biochemical, and genotoxic effects of wastewater on maize seedlings

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Wastewater not only provides nutrients to the plant community but may cause abiotic stress conditions due to the presence of toxic substances. The present study was designed to explore wastewater-induced changes in maize seedlings using four different concentrations (0, 10, 50, and 100%) collected from three different sources, i.e., municipal wastewater (designated as MW), woolen mill wastewater (designated as WW) and polyvinylchloride wastewater (designated as PW) of the city of Bannu situated in Khyber Pakhtunkhwa, Pakistan. All physiological parameters such as germination, biomass, and length of maize seedlings gradually slowed down with the increase in wastewater concentration. Similarly, the photosynthetic pigments decreased, while an increase was calculated in Na+ and Ca++ and K+ ions in our present experiment. The malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents as well as antioxidative enzymes such superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) upregulated in all treated samples, while total soluble proteins increased. Various wastewater sources also caused genotoxic effects as revealed by the appearance and disappearance of various bands at DNA and protein levels. The present study reveals that different sources of wastewater caused differential stresses in maize seedlings, which might be due to the presence of different stressful agents in them.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

2

Opis fizyczny

p.563-571,fig.,ref.

Twórcy

autor
  • Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
  • Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, 26000, Pakistan
autor
  • Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, 26000, Pakistan
autor
  • Department of Botany, Kohat University of Science and Technology, 26000, Pakistan
autor
  • Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, 26000, Pakistan
autor
  • Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, 26000, Pakistan
autor
  • Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, 26000, Pakistan
autor
  • Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, 26000, Pakistan
autor
  • Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China

Bibliografia

  • 1. POSTEL S.L., DAILY G.C., EHRLICH P.R. Human appropriation of renewable fresh water. Sci. 271, 785, 1996.
  • 2. LIU W.H., ZHAO J.Z., OUYANG Z. Y., SOLDERLAND L., LIU G. H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Inter. 32, 805, 2005.
  • 3. HORSEWELL J., SPEIR T. W., VAN SCHAIK A.P. Bioindicators to assess impacts of heavy metals in the land applied sewage sludge. Soil Biol. Biochem. 35, 1501, 2003.
  • 4. WANG H., YANG Z.M. Copper induced stress and antioxidative responses in roots of Brassica juncea L. Bot. Bull. Acad. Sinica. 45, 203, 2004.
  • 5. MADYIWA S., CHIMBARI M., NYAMANGARA J., BANGARIA C. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under mixture of star and Kikuyu grasses in Zimbabwe. Phys. Chem. Earth. 27, 747, 2002.
  • 6. TÜRKEZ H., TURGAY S., UMIT D., FATIME G., TATAR A., KELES M. S. The genotoxic and biochemical effects of wastewater samples from a fat plant in Erzurum. BAÜ FBE Dergisi Cilt. 11, 55, 2009.
  • 7. DAUD M.K., QUILING He., LEI M., ALI B., ZHU S.J. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemos. 120, 309, 2015.
  • 8. MARYAM S., MOHESENZADEH S., MOHABATKAR H. Cadmium induced genotoxicity detected by the random amplification of polymorphism DNA in the maize seedling roots. J. of Cell and Mole. Res. 2, 42, 2010.
  • 9. AHMED S., SALEEM M. A., RAUF I. Field efficacy of some bioinsecticides against Maize and Jowar stem borer, Chilo partellus (Pyralidae: Lepidoptera). Int. J. Agric. & Biol. 4, 332, 2002.
  • 10. NAZ F., HUSSAIN M., DIN M. Insect pests of maize and their losses. Asian J. Plant Sci. 2, 412. 2003.
  • 11. RAI P. K., KUMAR G. The genotoxic potential of two heavy metals in inbred lines of maize (Zea mays L.). Turk. J. Bot. 34, 39, 2010.
  • 12. AWAN J.A., SALIM U.R. Food analysis manual. Vet. Agric. Publication. 5, 2, 1997.
  • 13. BERNSTEIN N., SHORESH M., XU Y., HUANG B. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radical Biol Med. 49, 116, 2010.
  • 14. DAWOOD M., CAO F., JAHANGIR M.M., ZHANG G., WU F. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. J. Hazard. Mater. 209, 121, 2012.
  • 15. CENKCI S., YILDIZ M., CIG ERCI I.H., KONUK M., BOZDAG A. Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemos. 76, 900, 2009.
  • 16. LAEMMLI U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat. 227, 680, 1970.
  • 17. NAGDA G.K., DIWAN A.M., Ghole V.S. Seed germination bioassay to assess toxicity of molasses fermentation besed bulk drug industry effluent. Elec. J. Env. Agri. Food Chem. 5, 1598, 2006.
  • 18. SHAKOOR M.B., ALI S., FARID M., FAROOQ M.A., TAUQEER H.M., IFTIKHAR U., HANNAN F., BHARWANA S.A. Heavy metal pollution, a global problem and its remediation by chemically enhanced phytoremediation: A Review. J. of Biodiver. and Environ.l Sci. 3, 12, 2013.
  • 19. SINGH K.P., MOHON D., SINHA S., R. Dalwani. Impact assessment of treated/untreated wastewater toxicants discharge by sewage treatment plants on health, agricultural and environmental quality in wastewater disposal area. Chemos. 55, 227, 2004.
  • 20. SHEKHAWAT G. S., VERMA K., JANA S.,SINGH K., TEOTIA P., PRASAD A. In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplas. 239, 31, 2010.
  • 21. DOKE K.M., KHAN E.M., RAPOUL J., SHAIKH A. Physico-chemical analysis of sugar industry effluent and its effect on seed germination of Vigna angularis, Vigna cylindrical and Sorghum cernum. Ann. Environ. Sci. 5, 7, 2011.
  • 22. DASH A.K. Impact of domestic wastewater on seed germination and physiological parameters of rice and wheat. Int. J. Res. & Rev. Appl. Sci. 12I, 280, 2012.
  • 23. KHAN N.A., SAMIULLAH S.S., NAZAR R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J. Agron. Crop Sci. 193, 435. 2007.
  • 24. BAZAI Z.A., ACHAKZAI A.K.K. Effect of waste water from Quetta city on germination and seedling growth of lettuce (Lactuca sativa L.). J. Appl.Sci. 6, 380, 2006.
  • 25. HUSSAIN I., IQBAL M., NAWAZ M., RASHEED R., PERVEEN A., MAHMOOD S., YASMEEN A., WAHID A. Effect of sugar mill effluent on growth and antioxidative potential of maize seedling. Int. J. Agric. & Biol. 15, 1227.
  • 26. JIN X., YANG X., ISLAM E., LIU D., MAHMOOD Q. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J. Hazard. Mater. 156, 387, 2008.
  • 27. QUAN L.J., ZHANG B., SHI W.W., LI H.Y. Hydrogen Peroxide in Plants: A versatile molecule of reactive oxygen species network. Journal of Integrative Plant Biology. 50, 2, 2008.
  • 28. SHARMA P., JHA B., DUBEY R.S., PESSARAKLI M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot, 2012: Article ID 217037. 2012.
  • 29. GILL S.S., TUTE JA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909, 2010.
  • 30. RAZINGER J., DERMASTIA M., KOCE J. D., ZRIMEC A. Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure. Environ. Pollut.153, 687, 2007.
  • 31. SAVVA D. Use of DNA fingerprinting to detect genotoxic effects. Ecotoxicol. Environ. Saf. 41, 103, 1998.
  • 32. LI X., MA H., JIA P., WANG J., JIA L., ZHANG T.,YANG Y.,CHEN H., WEI X., Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicol. Environ. Saf. 86, 47, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-994eeaf3-e70e-49ff-8c1b-c140ea3aea99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.