Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 3 |
Tytuł artykułu

Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes

Treść / Zawartość
Warianty tytułu
Języki publikacji
Background. A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. Material and methods. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Results. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats’ organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. Conclusion. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.
Słowa kluczowe
Opis fizyczny
  • Federal State Scientific Institution Institute of Toxicology, Federal Medico-Biological Agency, Bekhtereva St.1, Petersburg 192019, Russia
  • Russian Society of Trace Elements in Medicine, ANO Centre for Biotic Medicine, Zemlyanoy Val 46, Moscow 105064, Russia
  • Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Baltiyskaya 8, Moscow 125315, Russia
  • Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Baltiyskaya 8, Moscow 125315, Russia
  • Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Baltiyskaya 8, Moscow 125315, Russia
  • Russian Society of Trace Elements in Medicine, ANO Centre for Biotic Medicine, Zemlyanoy Val 46, Moscow 105064, Russia
  • Department of Biochemistry, Orenburg State Medical University, Sovetskaya 6, Orenburg 460000, Russia
  • Baek, M., Chung, H. E., Yu, J., Lee, J. A., Kim, T. H., Oh, J. M., Lee, W. J., Paek, S. M., Lee, J. K., Jeong, J., Choy, J. H., Choi, S. J. (2012). Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles, lnt. J. Nanomed., 7, 3081-3097.
  • Barretto, J. R., Silva, L. R., Leite, M. E., Boa-Sorte, N., Pimentel, H., Purificasao, A. C., Carvalho, G., Fontes, M. I., Amorim, T. (2008). Poor zinc and selenium status in phenylketonuric children and adolescents in Brazil. Nutr. Res., 28, 3, 208-211.
  • Bettger, W. J. (1993). Zinc and selenium, site-specific versus general antioxidation. Can. J. Physiol. Pharmacol., 71, 9, 721-724.
  • Blessing, H., Kraus, S., Heindl, P., Bal, W., Hartwig, A. (2004). Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur. J. Bio- chem., 271, 15,3190-3199.
  • Çavdar, A. O., Gözdaşoğlu, S., Babacan, E., Mengübaş, K., Ünal, E., Yavuz, G., Taçyildiz, N. (2009). Zinc and selenium status in pediatric malignant lymphomas. Nutr. Cancer., 61,6, 888-890.
  • Chen, R. W., Vasey, E. J., Whanger, P. D. (1977). Accumulation and depletion of zinc in rat liver and kidney metallothionens. J. Nutr., 107, 5, 805-813.
  • Chmielnicka, J., Zareba, G., Witasik, M., Brzeznicka, E. (1988). Zinc-selenium interaction in the rat. Biol. Trace Elem. Res., 15, 267-276.
  • De Jong, N., Gibson, R. S., Thomson, C. D., Ferguson, E. L., McKenzie, J. E., Green, T. J., Horwath, C. C. (2001). Selenium and zinc status are suboptimal in a sample of older New Zealand women in a community - based study. J. Nutr., 131, 10, 2677-2684.
  • Diplock, A. T. (1993). Indexes of selenium status in human populations. Am. J. Clin. Nutr., 57(2), 256-258.
  • Eybl, V., Sykora, J., Mertl, F. (1986). In vivo interaction of selenium with zinc. Acta Pharm. Toxicol., 59, 7, 547-548.
  • Faa, G., Nurchi, V. M, Ravarino, A., Fanni, D., Nemolato, S., Gerosa, C., Van Eyken, P., Geboes, K. (2008). Zinc in gastrointestinal and liver disease. Coord. Chem. Rev., 252, 10, 1257-1269.
  • Fatmi, W., Kechrid, Z., Naziroglu, M., Flores-Arce, M. (2013). Selenium supplementation modulates zinc levels and antioxidant values in blood and tissues of diabetic rats fed zinc-deficient diet. Biol. Trace Elem. Res., 152, 2, 243-250.
  • Feroci, G., Badiello, R., Fini, A. (2005). Interactions between different selenium compounds and zinc, cadmium and mercury. J. Trace Elem. Med. Biol., 18, 3, 227-234.
  • Galażyn-Sidorczuk, M., Brzóska, M. M., Rogalska, J., Roszczenko, A., Jurczuk, M. (2012). Effect of zinc supplementation on glutathione peroxidase activity and selenium concentration in the serum, liver and kidney of rats chronically exposed to cadmium. J. Trace Elem. Med. Biol., 26, 1, 46-52.
  • Guo, C. H., Chen, P. C., Hsu, G. S., Wang, C. L. (2013). Zinc supplementation alters plasma aluminum and selenium status of patients undergoing dialysis: a pilot study. Nutrients, 5, 4, 1456-1470.
  • Hambidge, K. M., Krebs, N. F., Miller, L. (1998). Evaluation of zinc metabolism with use of stable-isotope techniques: implications for the assessment of zinc status. Am. J. Clin. Nutr, 68, 2, 410-413.
  • House, W. A., Welch, R. M. (1989). Bioavailability of and interactions between zinc and selenium in rats fed wheat grain intrinsically labeled with 65Zn and 75Se. J. Nutr., 119, 6,916-921.
  • Kaim, W., Schwederski, B., Klein, A. (2013). Bioinorganic chemistry - inorganic elements in the chemistry of life: An introduction and guide. John Wiley: Chichester.
  • Kara, E., Gunay, M., Cicioglu, i., Ozal, M., Kilic, M., Mogulkoc, R., Baltaci, A. K. (2010). Effect of zinc supplementation on antioxidant activity in young wrestlers. Biol. Trace Elem. Res., 134, 1, 55-63.
  • Khalili, H., Soudbakhsh, A., Hajiabdolbaghi, M., Dashti-Khavidaki, S., Poorzare, A., Saeedi, A. A., Sharififar, R. (2008). Nutritional status and serum zinc and selenium levels in Iranian HIV infected individuals. BMC Infect. Dis., 8, 165.
  • Kim, H. H., Yang, H. R., Kim, H. Y. P. (2011). Selenium status and glutathione peroxidase activity in Korean infants. Kor. J. Nutr., 44, 2, 112-118.
  • Krebs, N. F., Miller, L. V., Naake, V. L., Lei, S, Westcott, J. E., Fennessey, P. V., Hambidge, K. M. (1995). The use of stable isotope techniques to assess zinc metabolism. J. Nutr. Biochem., 6, 6, 292-301.
  • Lee, J. H. (2012). Micronutrient deficiency syndrome: zinc, copper and selenium. Pediatr. Gastroenterol. Hepatol. Nutr., 15(3), 145-150.
  • Luoma, P. V., Sotaniemi, E. A., Korpela, H., Kumpulainen, J. (1984). Serum selenium, glutathione peroxidase activity and high-density lipoprotein cholesterol - effect of selenium supplementation. Res. Commun. Chem. Pathol. Pharmacol., 46, 3, 469—472.
  • Prasad, A. S. (2003). Zinc deficiency. BMJ, 326, 7386, 409-410.
  • Samman, S., Roberts, D. C. (1987). The effect of zinc supplements on plasma zinc and copper levels and the reported symptoms in healthy volunteers. Med. J. Aust., 146, 5, 246-249.
  • Tappel, A. (2014). Selenium-glutathione peroxidase: properties and synthesis. In M. DeLuca, H. Lardy, R. L. Cross (Eds), Current Topics in Cellular Regulation. Vol. 24. Enzyme Catalysis and Control (pp. 87—96). Orlando, Florida: Academic Press.
  • Zhao, L. J., Ren, T., Zhong, R. G. (2012). Determination of lead in human hair by high resolution continuum source graphite furnace atomic absorption spectrometry with microwave digestion and solid sampling. Analyt. Lett., 45, 2467-2481.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.