PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |

Tytuł artykułu

Leaching of zinc ash with hydrochloric acid solutions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fine-grained fraction (<1.25 mm) of industrial zinc ash was characterized in terms of chemical and phase compositions as well as leaching behaviour in hydrochloric acid solutions. Waste product contained about 55% Zn, 14% Cl, and less than 0.4% of other metals (Fe, Pb, Al, etc.). It was a mixture of metallic zinc, simonkolleite, zinc oxide, and zinc hydroxide chloride. Dissolution of metals from the zinc ash was determined depending on the solid-to-liquid ratio (1:80-1:20), acid concentration (0.23-2.0 M), and temperature (20-60ºC). The best results (almost 100% zinc recovery) were obtained for 2M HCl at 20ºC, S:L ratio 1:20, and leaching time 30 min. The final solutions were contaminated mainly by iron and lead ions (both below 0.15 g/L). Further treatment of the solution to obtain metallic zinc or zinc chloride was also proposed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

4

Opis fizyczny

p.1765-1771,fig.,ref.

Twórcy

autor
  • Technical University of Kosice, Faculty of Materials, Metallurgy and Recycling, Kosice, Slovakia
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Krakow, Poland
autor
  • Technical University of Kosice, Faculty of Materials, Metallurgy and Recycling, Kosice, Slovakia
  • Technical University of Kosice, Faculty of Materials, Metallurgy and Recycling, Kosice, Slovakia

Bibliografia

  • 1. NG K.S, HEAD I., PREMIER G.C., SCOTT K., YU E., LLOYD J., SADHUKHAN J., A multilevel sustainability analysis of zinc recovery from wastes, Resourc. Conserv. Recycl., 113, 88, 2016
  • 2. www.zinc.org (28.08.2017)
  • 3. JHA M.K., KUMAR V., SINGH R.J., Review of hydrometallurgical recovery of zinc from industrial wastes, Resourc. Conserv. Recycl., 33, 1, 2001.
  • 4. SAYILGAN E., KUKRER T., CIVELEKOGLU G., FERELLA F., AKCIL A., VEGLIO F., KITIS M., A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries, Hydrometall., 97, 158, 2009.
  • 5. RADZYMIŃSKA-LENARCIK E., SULEWSKI M., URBANIAK W., Recovery of zinc from metallurgic waste sludges, Pol. J. Environ. Stud., 24 (3), 1277, 2015.
  • 6. REUTER M.A., WORRELL E. (Eds.), Handbook of recycling, Elsevier, 113, 2014.
  • 7. KUKLÍK V., KUDLÁČEK J., Hot-Dip Galvanizing of Steel Structures, Elsevier, 2016.
  • 8. 2014/955/EU: Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council, 2014.
  • 9. DVOŘÁK P., JANDOVÁ J., Hydrometallurgical recovery of zinc from hot dip galvanizing ash, Hydrometall., 77, 29, 2005.
  • 10. BRIGHT M.A., DEEM N.J., FRYATT J., The advantages of recycling metallic zinc from the processing wastes of industrial molten zinc applications, Light Metals, TMS, 101, 2007.
  • 11. RUDNIK E., WŁOCH G., SZATAN L., Comparative studies on acid leaching of zinc from waste materials, Metall. Res. Technol. 115 (110) 2018.
  • 12. RUDNIK E., WŁOCH G., SZATAN L., Hydrometallurgical treatment of zinc ash from hot dip galvanizing process, Min. Metall. Process. 2017 (in press).
  • 13. VARGHESE V., REVANNA M., KIRAN R., SHIVAKUMAR M.C., KUMAR D., Hydrometallurgical recovery of zinc from zinc ash, silver from waste X-ray and photographic films, Int. J. Eng. Res. Technol., 4 (6), 878-, 2015.
  • 14. TAKÁCOVÁ Z., HLUCHÁNOVÁ B., TRPCEVSKÁ J., Leaching of zinc from zinc ash originating from hot dip galvanizing, Metall., 64 (12), 517, 2010.
  • 15. BAKARAT M.A., Recovery of zinc from zinc ash and flue dust by pyrometallurgical processing, in: Stewart D.L., Daley J.C., Stephens R.L. (Eds.), Recycling of Metals and Engineering Materials, Wiley, 211, 2000.
  • 16. VOURIALIS G., PISTOFIDIS N., PAVLIDOU E., STERGIOUDIS G., POLYCHRONIADIS E.K., Study of the structure of hot-dip galvanizing byproducts, J. Optoel. Adv. Mater., 9 (9), 2937, 2007.
  • 17. DAKHILI N., RAZAVIZADEH H., SALEHI M.T., SEYEDEIN S.H., Recovery of zinc from the final slag of steel’s galvanizing process, Adv. Mater. Res., 264-265, 592, 2011.
  • 18. MIRZA A., BURR M., ELLIS T., EVANS D., KAKENGELA D., WEBB L., GAGNON J., LECLERCQ F., JOHNSTON A., Corrosion of lead anodes in base metals electrowinning, J. South Afric. Inst. Min. Metall., 116, 533, 2016.
  • 19. GÜRESIN N., TOPKAYA Y.A., Dechlorination of a zinc dross, Hydrometall., 49, 179, 1998.
  • 20. CINAR SAHIN F., DERIN B., YÜCEL O., Chloride removal from zinc ash, Scand. J. Metall., 29, 224, 2000.
  • 21. JHA M.K., KUMAR V., SINGH R.J., Solvent extraction of zinc from chloride solutions, Solv. Extr. Ion Exch., 20 (3), 389, 2002.
  • 22. COLE P.M., SOLE K.C., Solvent extraction in the primary and secondary processing of zinc, J. South Afr. Inst. Min. Metall., 10/11, 451, 2002.
  • 23. BAIK D.S., FRAY D.J., Electrodeposition of zinc from high acid zinc chloride solutions, J. Appl. Electrochem., 31, 1141, 2001.
  • 24. GUO H., LU J., DREISINGER D., KUHAR L.L., STEYL J., SMIT J., Zinc electrowinning of from acidic chloride solutions, Lead-Zinc 2010 Symposium, Vancouver, Canada, Conf. Mat., 685, 2010.
  • 25. MEI Y., SHERMAN D.M., LIU W., ETSCHMANN B., TESTEMALE D., BRUGGER J., Zinc complexation in chloride-rich hydrothermal fluids (25-600ºC): A thermodynamic model derived from ab initio molecular dynamics, Geochim. Cosmochim. Acta, 150, 265, 2015.
  • 26. GAMBURG Y.D., ZHANGARI G., Theory and practice of metal electrodeposition, Springer, 2011.
  • 27. CARRILLO-ABAD J., GARCÍA-GABALDÓN M., PÉREZ-HERRANZ V., pH effect on zinc recovery from the spent pickling baths of hot dip galvanizing industries, Sep. Purif. Technol., 177, 21, 2017.
  • 28. LUM K.H., STEVENS G.W., KENTISH S.E., Development of a process for the recovery of zinc sulphate from hot-dip galvanizing spent pickling liquor via two solvent extraction steps, Hydrometall., 142, 108, 2014.
  • 29. LAWSON G. J., Solvent extraction of metals from chloride solutions, J. Appl. Chem. Biotechnol., 25, 949, 1975.
  • 30. PARUS A., OLSZANOWSKI A., WIESZCZYCKA K., Solvent extraction of iron(III) from chloride solutions in the presence of copper(II) and zinc(II) using hydrophobic pyridyl ketoximes, Sep. Sci. Technol., 46 (1), 87, 2011.
  • 31. WOJCIECHOWSKA A., WIESZCZYCKA K., WOJCIECHOWSKA I., OLSZANOWSKI A., Lead(II) extraction from aqueous solutions by pyridine extractants, Sep. Pur. Technol., 177, 239, 2017.
  • 32. NICOL, M., AKILAN C., TJANDRAWAN V., GONZALEZ J.A., The effects of halides in the electrowinning of zinc. I. Oxidation of chloride on lead-silver anodes, Hydrometall., 173, 125, 2017.
  • 33. NICOL M., AKILAN C., TJANDRAWAN V., GONZALEZ J.A., The effects of halides in the electrowinning of zinc. II. Corrosion of lead-silver anodes, Hydrometall., doi. org/10.1016/j.hydromet.2017.08.017, 2017.
  • 34. MACKINNON D.J., BRANNEN J.M., MORRISON R.M., Zinc electrowinning from aqueous chloride electrolyte, J. Appl. Electrochem., 12, 39, 1982.
  • 35. HENNINGS E., SCHMIDT H., VOIGT W., Crystal structures of ZnCl₂·2.5H₂O, ZnCl₂·3H₂O and ZnCl₂·4.5H₂O, Acta Crystall. E, E70, 515, 2014.
  • 36. ANDREETA M., Crystallization - Science and Technology, InTech, 2012.
  • 37. SMAKOWSKI T., NEY r., GALOS K. (Eds)., Balance of management of mineral resources of Poland and the world 2009, IGSNiE PAN, Kraków, 2011 [In Polish].
  • 38. QUENEAU P.B., LEIBY R., ROBINSON R., Recycling Lead and Zinc in the United States, Erzmetall, 68 (3), 149, 2015.
  • 39. 39. www.eea.europa.eu/data-and-maps/indicators (publ. 15.08.2017), 2017.
  • 40. EEA, “Movements of waste across the EU’s internal and external borders. Report, 7/2012”, European Environment Agency, Copenhagen, 2012.
  • 41. EPA, “Waste classification. List of waste & determining if waste is hazardous or non-hazardous valid from 1 June 2015”, Environmental Protection Agency, Ireland, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-98f45ce2-cf9f-4dbe-b653-f2d40dc6eb62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.