PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 2 |

Tytuł artykułu

The effects of human-mediated habitat fragmentation on a sedentary woodland-associated species (Rhinolophus hipposideros) at its range margin

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Among the many anthropogenic modifications to earth's ecosystems, habitat loss and degradation pose the most immediate threat to many biota. The predicted consequences of fragmented habitats include lower species diversity, smaller population sizes, disrupted gene flow, increased drift and inbreeding and increased differentiation between neighbouring populations; all of which are thought to be further enhanced in species with low dispersal abilities. These factors, especially when occurring in tandem, can lead to an increased risk of extinction. To examine the genetic consequences of habitat fragmentation we selected an isolated population of a sedentary woodland specialist species (Rhinolophus hipposideros) to act as an indicator of disruptions to landscape level connectivity. Based on 491 individuals from 37 colonies our results revealed the presence of a broad North-Range/South-Range differentiation within this species in Ireland; a finding supported across datasets (mtDNA and nuclear microsatellites) and analyses. Analyses of echolocation data and microsatellites suggested further differentiation of the northern-most colonies. A landscape genetics framework to assess the impact of habitat versus geographic distance on population differentiation showed that habitat features (at a five km resolution) were equally likely to be correlated with differentiation as geographic distance considered alone. Further differentiation of the geographically disjunct groups is likely to occur in the future. The viability of either group alone is uncertain given their restricted distribution, small population sizes (based on census data and Ne estimates) and isolation. Roost provision and habitat restoration in the geographic region separating the differentiated groups will be fundamental to the recolonization of this area and the reestablishment of connectivity between the regional groups.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.377-393,fig.,ref.

Twórcy

autor
  • School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
  • School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
  • Zoological Institute and Museum, Greifswald University, Soldmann-Strase 14, D-17489, Greifswald, Germany
autor
  • Spring Lane, Carrigagulla, Ballinagree, Macroom, County Cork, Ireland
autor
  • The Vincent Wildlife Trust, Donaghpatrick, Headford, County Galway, Ireland
autor
  • School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland

Bibliografia

  • 1. Ancillotto, L., L. Santini, N. Ranc, L. Maiorano, and D. Russo. 2016. Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation. The Science of Nature, 103: 1–8. Google Scholar
  • 2. Anderson, C. D., B. K. Epperson, M. J. Fortin, R. Holderegger, P. James, M. S. Rosenberg, K. T. Scribner, and S. Spear. 2010. Considering spatial and temporal scale in landscape-genetic studies of gene flow. Molecular Ecology, 19: 3565–3575. Google Scholar
  • 3. Antao, T., A. Lopes, R. J. Lopes, A. Beja-Pereira, and G. Luikart. 2008. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bio informatics, 9: 323–327. Google Scholar
  • 4. Bandelt, H. J., P. Forster, and A. Rohl. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16: 37–48. Google Scholar
  • 5. Beaumont, M. A. 1999. Detecting population expansion and decline using microsatellites. Genetics, 153: 2013–2029. Google Scholar
  • 6. Beaumont, M. A., and R. A. Nichols. 1996. Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London, 263B: 1619–1626. Google Scholar
  • 7. Besnier, F., and K. A. Glover. 2013. ParallelStructure: a R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE, 8: e70651. Google Scholar
  • 8. Bilgin, R., K. Gurun, H. Rebelo, S. J. Puechmaille, O. Maraci, P. Presetnik, P. Benda, P. Hulva, C. Ibanez, D. Hamidovic , et al. 2016. Circum-Mediterranean phylogeography of a bat coupled with past environmental niche modeling: A new paradigm for the recolonization of Europe ? Molecular Phylogenetics and Evolution, 99: 323–336. Google Scholar
  • 9. Bivand, R., T. Keitt, B. Rowlingson, E. Pebesma, M. Sumner, R. J. Hijmans, and E. Rouault. 2015. R package rgdal: Bin d ings for the Geospatial Data Abstraction Library (GDAL). Available at https://r-forge.r-project.org/projects/rgdal/. Google Scholar
  • 10. Bontadina, F., H. Schofied, and B. Naef-Daenzer. 2002. Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland. Journal of Zoology (London), 258: 281–290. Google Scholar
  • 11. Borkhausen, M. B. 1797. Deutsche Fauna oder kurzgefasste Na turgeschichte der Thiere Deutschlands. Erster Theil, Saugthiere und Vogel. Warrentrapp und Werren, Frankfurt am Main, Germany, 620 pp. Google Scholar
  • 12. Boughey, K. L., I. R. Lake, K. A. Haysom, and P. M. Dolman. 2011. Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat spe cies across the UK. Biological Conservation, 144: 2300–2310. Google Scholar
  • 13. Brewer, S., R. Cheddadi, J. L. De Beaulieu, and M. Reille. 2002. The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecology and Management, 156: 27–48. Google Scholar
  • 14. Chen, C., E. Durand, F. Forbes, and O. Francois. 2007. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes, 7: 747–756. Google Scholar
  • 15. Corander, J., and P. Marttinen. 2006. Bayesian identification of admixture events using multilocus molecular markers. Mol ecular Ecology, 15: 2833–2843. Google Scholar
  • 16. Corander, J., P. Marttinen, J. Siren, and J. Tang. 2008. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics, 9: 539. Google Scholar
  • 17. Coulon, A., J.-F. Cosson, J. M. Angibault, B. Cargnelutti, M. Galan, N. Morellet, E. Petit, S. Aulagnier, and A. J. M. Hewison. 2004. Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Molecular Ecology, 13: 2841–2850. Google Scholar
  • 18. Coulon, A., G. Guillot, J.-F. Cosson, J. M. A. Angibault, S. Aulagnier, B. Cargnelutti, M. Galan, and A. J. M. Hewison. 2006. Genetic structure is influenced by landscape features: empirical evidence from roe deer population. Molecular Ecology, 15: 1669–1679. Google Scholar
  • 19. Dietz, C., O. Von Helversen, and D. Nill. 2009. Bats of Britain, Europe & Northwest Africa. A&C Black Publishers Ltd., London, 400 pp. Google Scholar
  • 20. Do, C., R. S. Waples, D. Peel, G. Macbeth, B. J. Tillett, and J. R. Ovenden. 2014. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14: 209–214. Google Scholar
  • 21. Dool, S. E., S. J. Puechmaille, C. Dietz, J. Juste, C. Ibanez, P. Hulva, S. G. Roue, E. J. Petit, G. Jones, D. Russo, et al. 2013. Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Molecular Ecology, 22: 4055–4070. Google Scholar
  • 22. Dool, S. E., S. Puechmaille, N. M. Foley, B. Allegrini, A. Bastian, G. Mutumi, T. Maluleke, L. J. Odendaal, E. Teeling, and D. Jacobs. 2016a. Nuclear introns outperform mitochondrial DNA in phylogenetic reconstruction: lessons from horseshoe bats (Rhinolophidae: Chiroptera). Molecular Phylogenetics and Evolution, 97: 196–212. Google Scholar
  • 23. Dool, S. E., C. O'Donnell, F. J. , J. M. Monks, S. J. Puechmaille, and G. Kerth. 2016b. Phylogeographic-based conservation implications for the New Zealand long-tailed bat, (Chalinolobus tuberculatus): identification of a single ESU and a candidate population for genetic rescue. Conservation Genetics, 17: 1067–1079. Google Scholar
  • 24. Dray, S., and A. B. Dufour. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22: 1–20. Google Scholar
  • 25. Dubreuil, M., M. Riba, S. C. Gonzalez-Martinez, G. G. Ven-Dramin, F. Sebastiani, and M. Mayol. 2010. Genetic effects of chronic habitat fragmentation revisited: strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. American Journal of Botany, 97: 303–310. Google Scholar
  • 26. Durand, E., F. Jay, O. C. Gaggiotti, and O. Francois. 2009. Spatial inference of admixture proportions and secondary contact zones. Molecular Biology and Evolution, 26: 1963–1973. Google Scholar
  • 27. Epps, C. W., and N. Keyghobadi. 2015. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Molecular Ecology, 24: 6021–6040. Google Scholar
  • 28. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611–2620. Google Scholar
  • 29. Ewers, R. M., and R. K. Didham. 2006. Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews of the Cambridge Philosophical Society, 81: 117–142. Google Scholar
  • 30. Excoffier, L., and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10: 564–567. Google Scholar
  • 31. Falush, D., M. Stephens, and J. K. Pritchard. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164: 1567–1587. Google Scholar
  • 32. Farcy, O., A. Le Rouxel, and S. Queau. 2009. Activite et terrains de chasse du petit rhinolophe (Rhinolophus hipposideros Bechstein, 1800) en Bretagne, France. Arvicola, 19: 12–20. Google Scholar
  • 33. Foley, N. M., V. D. Thong, P. Soisook, S. M. Goodman, K. N. Armstrong, D. S. Jacobs, S. J. Puechmaille, and E. C. Teeling. 2015. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Molecular Biology and Evolution, 32: 313–333. Google Scholar
  • 34. Frantz, A. C., A. D. McDevitt, L. C. Pope, J. Kochan, J. Da-Vison, C. F. Clements, M. Elmeros, G. Molina-Vacas, A. Ruiz-Gonzalez, A. Balestrieri , et al. 2014. Revisiting the phylogeography and demography of European badgers (Me les meles) based on broad sampling, multiple markers and simulations. Heredity, 113: 1–11. Google Scholar
  • 35. Gaisler, J. 1963a. The ecology of lesser horseshoe bat (Rhinolophus hipposideros hipposideros) in Czechoslovakia II: ecological demands, problem of synanthropy. Acta Societatis Zoologicae Bohemoslovenicae, 27: 322–327. Google Scholar
  • 36. Gaisler, J. 1963b. The ecology of lesser horseshoe bat (Rhi nolophus hipposideros hipposideros Bechstein 1800) in Czecho slovakia, Part I. Acta Societatis Zoologicae Bohemoslovenicae, 27: 211–233. Google Scholar
  • 37. Gaisler, J. 1966. Reproduction in the lesser horseshoe bat (Rhino lophus hipposideros hipposideros Bechstein, 1800). Bijdragen tot de Dierkunde, 36: 45–64. Google Scholar
  • 38. Gaisler, J., and V. Hanak. 1969. Summary of the results of batbanding in Czechoslovakia, 1948–1967. Lynx, 10: 25–34. Google Scholar
  • 39. Gerlach, G., A. Jueterbock, P. Kraemer, J. Deppermann, and P. Harmand. 2010. Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Molecular Ecology, 19: 3845–3852. Google Scholar
  • 40. Girod, C., R. Vitalis, R. Leblois, and H. Freville. 2011. Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. Genetics, 188: 165–179. Google Scholar
  • 41. Goslee, S. C., and D. L. Urban. 2007. The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22: 1–19. Google Scholar
  • 42. Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available at www.unil.ch/izea/softwares/fstat.html. Google Scholar
  • 43. Goudet, J., N. Perrin, and P. Waser. 2002. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Molecular Ecology, 11: 1103–1114. Google Scholar
  • 44. Hijmans, R. J. 2015. Raster: geographic data analysis and modeling. R package version 2.4–20. Available at http://CRAN.R-project.org/package=raster. Google Scholar
  • 45. Holzhaider, J., E. Kriner, B. U. Rudolph, and A. Zahn. 2002. Radio-tracking a lesser horseshoe bat (Rhinolophus hipposideros) in Bavaria: an experiment to locate roosts and foraging sites. Myotis, 40: 47–54. Google Scholar
  • 46. Issel, W. 1950. Okologische Untersuchungen an der Kleinen Hufeisennase (Rhinolophus hipposideros (Bechstein) im mittleren Rheinland und unteren Altmuhltal. Zoologische Jahr bucher Abteilung fur Systematik Okologie und Geographie der Tiere, 79: 71–86. Google Scholar
  • 47. Jakobsson, M., and N. Rosenberg. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23: 1801. Google Scholar
  • 48. Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24: 1403–1405. Google Scholar
  • 49. Jones, G., T. Gordon, and J. Nightingale. 1992. Sex and age differences in the echolocation calls of the lesser horseshoe bat, Rhinolophus hipposideros. Mammalia, 56: 189–193. Google Scholar
  • 50. Jump, A. S., and J. Penuelas. 2006. Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proceedings of the National Academy of Sciences of the USA, 103: 8096–8100. Google Scholar
  • 51. Kelleher, C. 2004. Thirty years, six counties, one species: an update on the lesser horseshoe bat Rhinolophus hipposideros (Bechstein) in Ireland. The Irish Naturalists' Journal, 27: 387–392. Google Scholar
  • 52. Kopelman, N. M., J. Mayzel, M. Jakobsson, N. A. Rosenberg, and I. Mayrose. 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15: 1179–1191. Google Scholar
  • 53. Krauss, J., R. Bommarco, M. Guardiola, R. K. Heikkinen, A. Helm, M. Kuussaari, R. Lindborg, E. Ockinger, M. Partel, J. Pino , et al. 2010. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecology Letters, 13: 597–605. Google Scholar
  • 54. Lawrence, B. D., and J. A. Simmons. 1982. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. Journal of the Acoustical Society of America, 71: 585–590. Google Scholar
  • 55. Lettink, M., and D. P. Armstrong. 2003. An introduction to using mark-recapture analysis for monitoring threatened species. Pp. 5–32, in Using mark-recapture analysis for mon itoring threatened species: introduction and case study. Department of Conservation Technical Series, 28A, 63 pp. Google Scholar
  • 56. Lundy, M. G., T. Aughney, W. I. Montgomery, and N. Roche. 2011. Landscape conservation for Irish bats & species specific roosting characteristics. Bat Conservation Ireland, 49 pp. Google Scholar
  • 57. Lydon, K., and G. Smith. 2014. CORINE landcover 2012 Ireland final report. Environmental Protection Agency, Johnstown Castle, Co. Wexford, Ireland, 55 pp. Google Scholar
  • 58. McAney, C. 1994. The lesser horseshoe bat in Ireland — past, present and future. Folia Zoologica, 34: 387–392. Google Scholar
  • 59. McAney, K., C. O'Mahony, C. Kelleher, A. Taylor, and S. Biggane. 2013. The lesser horseshoe bat in Ireland: a series of surveys conducted by The Vincent Wildlife Trust. Irish Naturalists' Journal Occasional Publication, 38 pp. Google Scholar
  • 60. Meyer, C. F., E. K. Kalko, and G. Kerth. 2009. Small-scale fragmentation effects on local genetic diversity in two phyllo stomid bats with different dispersal abilities in Panama. Biotropica, 41: 95–102. Google Scholar
  • 61. Mitchell, F. J. G. 2006. Where did Ireland's trees come from ? Biology and the Environment: Proceedings of the Royal Irish Academy, 106B: 251–259. Google Scholar
  • 62. Moffat, C. B. 1938. The mammals of Ireland. Proceedings of the Royal Irish Academy, 44B: 61–128. Google Scholar
  • 63. Mortelliti, A., S. Fagiani, C. Battisti, D. Capizzi, and L. Boitani. 2010. Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Diversity and Distributions, 16: 941–951. Google Scholar
  • 64. Mortelliti, A., G. Amori, D. Capizzi, C. Cervone, S. Fagiani, B. Pollini, and L. Boitani. 2011. Independent effects of habitat loss, habitat fragmentation and structural connectivity on the distribution of two arboreal rodents. Journal of Applied Ecology, 48: 153–162. Google Scholar
  • 65. Motte, G., and R. Libois. 2002. Conservation of the lesser horse shoe bat (Rhinolophus hipposideros) in Belgium. A case study of feeding habitat requirements. Belgium Journal of Zoology, 132: 47–52. Google Scholar
  • 66. Movius, H. L., G. Roche, A. W. Stelfox, and J. C. Maby. 1935. Kilgreany Cave, County Waterford. The Journal of the Royal Society of Antiquaries of Ireland, 5: 254–296. Google Scholar
  • 67. Opdam, P., and D. Wascher. 2004. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117: 285–297. Google Scholar
  • 68. Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959. Google Scholar
  • 69. Puechmaille, S. J. 2016. The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: sub-sampling and new estimators alleviate the problem. Molecular Ecology Resources, 16: 608–627. Google Scholar
  • 70. Puechmaille, S. J., G. Mathy, and E. Petit. 2005. Characterization of 14 polymorphic microsatellite loci for the lesser horseshoe bat, Rhinolophus hipposideros (Rhinolophidae, Chiroptera). Molecular Ecology Notes, 5: 941–944. Google Scholar
  • 71. Puechmaille, S. J., M. A. Gouilh, P. Piyapan, M. Yokubol, K. M. Mie, P. J. Bates, C. Satasook, T. Nwe, S. S. H. Bu, I. J. Mackie , et al. 2011. The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nature Communications, 2: 573. Google Scholar
  • 72. Puechmaille, S. J., I. M. Borissov, S. Zsebok, B. Allegrini, M. Hizem, S. Kuenzel, M. Schuchmann, E. C. Teeling, and B. M. Siemers. 2014. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi. PLoS ONE, 9: e103452. Google Scholar
  • 73. Rackham, O. 1995. Looking for ancient woodland in Ireland. Pp. 1–12, in Wood, trees and forests in Ireland ( J. R. Pilcher and S. MacAntsoir, eds.). Royal Irish Academy, Dublin, 157 pp. Google Scholar
  • 74. Razgour, O., J. Hanmer, and G. Jones. 2011. Using multiscale modelling to predict habitat suitability for species of conservation concern: the grey long-eared bat as a case study. Biological Conservation, 144: 2922–2930. Google Scholar
  • 75. Razgour, O., J. Juste, C. Ibanez, A. Kiefer, H. Rebelo, S. J. Puechmaille, R. Arlettaz, T. Burke, D. A. Dawson, M. Beaumont , et al. 2013. The shaping of genetic variation in edge-of-range populations under past and future climate change. Ecology Letters, 16: 1258–1266. Google Scholar
  • 76. Razgour, O., H. Rebelo, S. J. Puechmaille, J. Juste, C. Ibanez, A. Kiefer, T. Burke, D. A. Dawson, and G. Jones. 2014. Scale-dependent effects of landscape variables on gene flow and population structure in bats. Diversity and Distributions, 20: 1173–1185. Google Scholar
  • 77. R CORE TEAM. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org. Google Scholar
  • 78. Rebelo, H., P. Tarroso, and G. Jones. 2010. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16: 561–576. Google Scholar
  • 79. Redpath, S. 1995. Habitat fragmentation and the individual: tawny owls Strix aluco in woodland patches. Journal of Animal Ecology, 64: 652–661. Google Scholar
  • 80. Reiter, G. 2004. The importance of woodland for Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in Austria. Mammalia, 68: 403–410. Google Scholar
  • 81. Reiter, G., E. Polzer, H. Mixanig, F. Bontadina, and U. Huttmeir. 2013. Impact of landscape fragmentation on a specialised woodland bat, Rhinolophus hipposideros. Mammalian Biology, 78: 283–289. Google Scholar
  • 82. Roche, N. 2001. The status of lesser horseshoe bats Rhinolophus hipposideros Bechstein in Co Limerick. The Irish Naturalists' Journal, 26: 446–452. Google Scholar
  • 83. Rogers, A. R., and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9: 552–569. Google Scholar
  • 84. Rosenberg, N. A. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4: 137–138. Google Scholar
  • 85. Rossiter, S. J., G. Jones, R. D. Ransome, and E. M. Barratt. 2000. Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum. Molecular Ecology, 9: 1131–1135. Google Scholar
  • 86. Rossiter, S. J., G. Jones, R. Ransome, and E. M. Barratt. 2006. Causes and consequences of genetic structure in the greater horseshoe bat, Rhinolophus ferrumequinum. Pp. 213–226, in Functional and evolutionary ecology of bats ( A. Zubaid, G. F. McCracken, and T. H. Kunz, eds.). Oxford University Press, New York, 360 pp. Google Scholar
  • 87. Rossiter, S. J., A. Zubaid, A. Mohd-Adnan, M. J. Struebig, T. H. Kunz, S. Gopal, E. J. Petit, and T. Kingston. 2012. Social organization and genetic structure: insights from codistributed bat populations. Molecular Ecology, 21: 647–661. Google Scholar
  • 88. Schenekar, T., and S. Weiss. 2011. High rate of calculation errors in mismatch distribution analysis results in numerous false inferences of biological importance. Heredity, 107: 511–512. Google Scholar
  • 89. Segelbacher, G., J. Hoglund, and I. Storch. 2003. From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Molecular Ecology, 12: 1773–1780. Google Scholar
  • 90. Sherwin, H. A., W. I. Montgomery, and M. G. Lundy. 2013. The impact and implications of climate change for bats. Mammal Review, 43: 171–182. Google Scholar
  • 91. Sikes, R. S., W. L. Gannon, and THE ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2011. Guidelines of the Amer ican Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 92. Storz, J. F., and M. A. Beaumont. 2002. Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution, 56: 154–166. Google Scholar
  • 93. Struebig, M. J., T. Kingston, A. Zubaid, A. Mohd-Adnan, and S. J. Rossiter. 2008. Conservation value of forest fragments to Palaeotropical bats. Biological Conservation, 141: 2112–2126. Google Scholar
  • 94. Struebig, M. J., T. Kingston, E. J. Petit, S. C. Lecomber, A. Zubaid, A. Mohd-Adnan, and S. J. Rossiter. 2011. Parallel declines in species and genetic diversity in tropical forest fragments. Ecology Letters, 14: 582–590. Google Scholar
  • 95. Tang, J., W. P. Hanage, C. Fraser, and J. Corander. 2009. Identifying currents in the gene pool for bacterial populations using an integrative approach. PLoS Computational Biology, 5: e1000455. Google Scholar
  • 96. Tilman, D., R. M. May, C. L. Lehman, and M. A. Nowak. 1994. Habitat destruction and the extinction debt. Nature, 371: 65–66. Google Scholar
  • 97. Tournant, P., E. Afonso, S. Roue, P. Giraudoux, and J.-C. Foltete. 2013. Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts us ing landscape graphs. Biological Conservation, 164: 39–49. Google Scholar
  • 98. Travis, J. M. J. 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society, 270B: 467–473. Google Scholar
  • 99. Tylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11: 1351–1363. Google Scholar
  • 100. Uhrin, M., U. Huttmeir, M. Kipson, P. Estok, K. Sachanowicz, S. Bucs, B. Karapandža, M. Paunović, P. Presetnik, and A.-T. Bashta. 2016. Status of Savi's pipistrelle Hypsugo savii (Chiroptera) and range expansion in Central and south-eastern Europe: a review. Mammal Review, 46: 1–16. Google Scholar
  • 101. Van Etten, J. 2012. R package gdistance: distances and routes on geographical grids, (version 1.1-4). Available at http://www2.uaem.mx/r-mirror/web/packages/gdistance/vignettes/gdistance-vignette.pdf. Google Scholar
  • 102. Verbeylen, G., L. A. Wauters, L. De Bruyn, and E. Matthysen. 2009. Woodland fragmentation affects space use of Eurasian red squirrels. Acta Oecologica, 35: 94–103. Google Scholar
  • 103. Verboom, J., A. Schotman, P. Opdam, and A. J. M. Johan. 1991. European nuthatch metapopulations in a fragmented agricultural landscape. Oikos, 61: 149–156. Google Scholar
  • 104. Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo. 1997. Human domination of Earth's ecosystems. Sci ence, 277: 494–499. Google Scholar
  • 105. Voigt, C. C., T. Kingston. 2016. Bats in the Anthropocene. Pp. 1–9, in Bats in the Anthropocene: conservation of bats in a changing World ( C. C. Voigt and T. Kingston, eds.). Springer International Publishing, Heidelberg, 606 pp. Google Scholar
  • 106. Wald, L., M. Albuisson, C. Best, C. Delamare, D. Dumortier, E. Gaboardi, A. Hammer, D. Heinemann, R. Kift, S. Kunz , et al. 2004. SoDa: a Web service on solar radiation. Proceedings of Eurosun, 2004(3): 921–927. Google Scholar
  • 107. Waples, R. S., and C. Do. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3: 244–262. Google Scholar
  • 108. Zahn, A., J. Holzhaider, E. Kriner, A. Maier, and A. Kayik-Cioglu. 2008. Foraging activity of Rhinolophus hippo sideros on the island of Herrenchiemsee, Upper Bavaria. Mammalian Biology, 73: 222–229. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-98e81abb-ed59-4048-97a1-320b6c2788c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.