PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 75 | 08 |
Tytuł artykułu

Oligodendrocytes: morphology, functions and involvement in neurodegenerative diseases

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oligodendrocytes (OLs) are myelinating cells of the central nervous system (CNS). They are a highly specialized type of glial cell in the CNS of vertebrates, which guarantee the transmission of action potentials over long distances by producing a myelin sheath that wraps adjacent axons. Although they are often credited merely with participation in myelination, recent research has led to a radical change in the understanding the role of these glial cells. OLs are currently understood to be plastic and adaptive cells, capable of responding quickly to changes taking place in the spatial neuronal network in the CNS. Due to their complex differentiation process and their physiology, OLs are among the most sensitive cells in the CNS. Finding answers about their interactions with other types of glial cells may result in benefits in the form of neuroprotection and axon plasticity. Damage to OLs and the myelin sheath is one of processes contributing to the development of crippling neurological diseases, although the role of these cells in neurodegeneration remains controversial. This article not only presents OLs as cells whose ultimate goal is to produce myelin sheaths, but also discusses their involvement in neurodegenerative diseases.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
75
Numer
08
Opis fizyczny
p.465-471,fig.,ref.
Twórcy
  • Department of Morphological Sciences, Faculty of Medicine, University of Rzeszow, ul.Leszka Czarnego 4, 35-615 Rzeszow, Poland
  • Department of Morphological Sciences, Faculty of Medicine, University of Rzeszow, ul.Leszka Czarnego 4, 35-615 Rzeszow, Poland
  • Department of Human Anatomy, Medical University of Lublin, ul.Jaczewskiego 4, 20-090 Lublin, Poland
autor
  • Department of Pig Breeding and Production Technology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, ul.Akademicka 13, 20-950 Lublin, Poland
autor
  • Department of Morphological Sciences, Faculty of Medicine, University of Rzeszow, ul.Leszka Czarnego 4, 35-615 Rzeszow, Poland
Bibliografia
  • Arcuri C., Mecca C., Bianchi R., Giambanco I., Donato R.: The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front. Mol. Neurosci. 2017, 19, 10, 191, doi: 10.3389/fnmol.2017.00191.
  • Ballatore C., Lee V. M., Trojanowski J. Q.: Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 2007, 8, 663-672.
  • Barateiro A., Brites D., Fernandes A.: Oligodendrocyte Development and Myelination in Neurodevelopment: Molecular Mechanisms in Health and Disease. Curr. Pharm. Des. 2016, 22, 656-679.
  • Bauer N. G., Richter-Landsberg C., Ffrench-Constant C.: Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 2009, 57, 1691-1705.
  • Baumann N., Pham-Dinh D.: Biology of Oligodendrocyte and Myelin in the Mammalian Central Nervous System. Physiol. Rev. 2001, 81, 871-927.
  • Boullerne A. I.: The history of myelin. Exp. Neurol. 2016, 283, 431-445.
  • Cai Z., Xiao M.: Oligodendrocytes and Alzheimer’s disease. International Journal of Neuroscience 2016, 126, 97-104.
  • Danek M., Danek J., Araszkiewicz A.: Large animals as potential models of human mental and behavioral disorders. Psychiatr. Pol. 2017, 51, 1009-1027.
  • Domingues H. S., Portugal C. C., Socodato R., Relvas J. B.: Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front. Cell Dev. Biol. 2016, 28, 4:71, doi: 10.3389/fcell.2016.00071.
  • Ducić T., Quintes S., Nave K. A., Susini J., Rak M., Tucoulou R., Alevra M., Guttmann P., Salditt T.: Structure and composition of myelinated axons: a multimodal synchrotron spectro-microscopy study. J. Struct. Biol. 2011, 173, 202-212, doi: 10.1016/j.jsb.2010.10.001.
  • Dulamea A. O.: Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. Adv. Exp. Med. Biol. 2017, 958, 91-127.
  • Durand B., Raff M.: A cell intrinsic timer that operates during oligodendrocyte development. Bioessays 2000, 22, 64-71.
  • Felts P. A, Woolston A. M., Fernando H. B., Asquith S., Gregson N. A., Mizzi O. J., Smith K. J.: Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. Brain 2005, 128, 1649-1666.
  • Fünfschilling U., Supplie L. M., Mahad D., Boretius S., Saab A. S., Edgar J., Brinkmann B. G., Kassmann C. M., Tzvetanova I. D., Möbius W., Diaz F., Meijer D., Suter U., Hamprecht B., Sereda M. W., Moraes C. T., Frahm J., Goebbels S., Nave K. A.: Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012, 29, 485, 517-521.
  • Gibson E. M., Purger D., Mount C. W., Goldstein A. K., Lin G. L., Wood L. S., Inema I., Miller S. E., Bieri G., Zuchero J. B., Barres B. A., Woo P. J., Vogel H., Monje M.: Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 2014, 344, 1252304, doi: 10.1126/science.1252304.
  • Griffin P., Furukawa R., Piggott C., Maselli A., Fechheimer M.: Requirements for Hirano body formation. Eukaryot Cell 2014, 13, 625-634.
  • Hardy R., Reynolds R.: Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development 1991, 111, 1061-1080.
  • Hartline D. K., Colman D. R.: Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 2007, 17, 29-35.
  • Hecker M., Fitzner B., Wendt M., Lorenz P., Flechtner K., Steinbeck F., Schröder I., Thiesen H. J., Zettl U. K.: High-Density Peptide Microarray Analysis of IgG Autoantibody Reactivities in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients. Mol. Cell Proteomics 2016, 15, 1360-1380.
  • Jaworski J., Psujek M., Janczarek M., Szczerbo-Trojanowska M., Bartosik-Psujek H.: Total-tau in cerebrospinal fluid of patients with multiple sclerosis decreases in secondary progressive stage of disease and reflects degree of brain atrophy. Ups. J. Med. Sci. 2012, 117, 284-292.
  • Jessen K. R.: Glial cells. Int. J. Biochem. Cell Biol. 2004, 36, 1861-1867.
  • Kang S. H., Li Y., Fukaya M., Lorenzini I., Cleveland D. W., Ostrow L. W., Rothstein J. D., Bergles D. E.: Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 2013, 16, 571-579.
  • Kettenmann H., Hanish U. K., Noda M., Verkhratsky A.: Physiology of Microglia. Physiol. Rev. 2011, 91, 461-553.
  • Lassmann H.: Multiple sclerosis: lessons from molecular neuropathology. Exp. Neurol. 2014, 262, 2-7.
  • Lee Y., Morrison B. M., Li Y., Lengacher S., Farah M. H., Hoffman P. N., Liu Y., Tsingalia A., Jin L., Zhang P. W., Pellerin L., Magistretti P. J., Rothstein J. D.: Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012, 487, 443-448.
  • Lennie P.: The cost of cortical computation. Curr. Biol. 2003, 13, 493-497.
  • Liu Y., Zhou J.: Oligodendrocytes in neurodegenerative diseases. Front. Biol. 2013, 8, 127-133, doi: 10.1007/s11515-013-1260-4.
  • McKenzie I. A., Ohayon D., Li H., Paes de Faria J., Emery B., Tohyama K., Richardson W. D.: Motor skill learning requires active central myelination. Science 2014, 346, 318-322.
  • Miller R. H.: Regulation of oligodendrocyte development in the vertebrate OUN. Prog. Neurobiol. 2002, 67, 451-467.
  • Mori S., Leblond C. P.: Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. J. Comp. Neurol. 1970, 139, 1-29.
  • Na S., Cao Y., Toben C., Nitschke L., Stadelmann C., Gold R., Schimpl A., Hünig T.: Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. Brain 2008, 131, 2353-2365.
  • Nash B., Ioannidou K., Barnett S. C.: Astrocyte phenotypes and their relationship to myelination. J. Anat. 2011, 219, 44-52.
  • Nave K. A., Werner H.: Myelination of the Nervous System: Mechanisms and Functions. Annu. Rev. Cell. Dev. Biol. 2014, 30, 503-533.
  • Nirzhor S. S. R., Khan R. I., Neelotpol S.: The Biology of Glial Cells and Their Complex Roles in Alzheimer’s Disease: New Opportunities in Therapy. Biomolecules 2018, 10, 8, pii: E93.
  • Nitsch R., Pohl E. E., Smorodchenko A., Infante-Duarte C., Aktas O., Zipp F.: Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. J. Neurosci. 2004, 24, 2458-2464.
  • Nonneman A., Robberecht W., Van Den Bosch L.: The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegener. Dis. Manag. 2014, 4, 223-239.
  • Noseworthy J. H., Lucchinetti C., Moses Rodriguez M., WeinshenkerB. G.: Multiple Sclerosis. N. Engl. J. Med. 2000, 343, 938-952.
  • Ofengeim D., Ito Y., Najafov A., Zhang Y., Shan B., DeWitt J. P., Ye J., Zhang X., Chang A., Vakifahmetoglu-Norberg H., Geng J., Py B., Zhou W., Amin P., Berlink Lima J., Qi C., Yu Q. Trapp B., Yuan J.: Activation of necroptosis in multiplesclerosis. Cell Rep. 2015, 24, 10, 1836-1849.
  • Pérez-Cerdá F., Sánchez-Gómez M. V., Matute C.: Pío del Río Hortega and the discovery of the oligodendrocytes. Front. Neuroanat. 2015, 7, 9:92, doi: 10.3389/fnana.2015.00092.
  • Philips T., Bento-Abreu A., Nonneman A., Haeck W., Staats K., Geelen V., Hersmus N., Küsters B., Van Den Bosch L., Van Damme P., Richardson W. D., Robberecht W.: Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 2013, 136, 471-482.
  • Popescu B. F., Pirko I., Lucchinetti C. F.: Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn) 2013, 19, 901-921.
  • Prinz M., Priller J.: Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 2014, 15, 300-312.
  • Ramanathan S., Dale R. C., Brilot F.: Anti-MOG antibody: the history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun. Rev. 2016, 15, 307-324.
  • Rohn T. T.: The triggering receptor expressed on myeloid cells 2: “TREMming” the inflammatory component associated with Alzheimer’s disease. Oxid. Med. Cell. Longev. 2013, 2013:860959, doi: 10.1155/2013/860959.
  • Roth A. D., Ramírez G., Alarcón R., Von Bernhardi R.: Oligodendrocytes damage in Alzheimer’s disease: beta amyloid toxicity and inflammation. Biol. Res. 2005, 38, 381-387.
  • Sekiyama K., Sugama S., Fujita M., Sekigawa A., Takamatsu Y., Waragai M., Takenouchi T., Hashimoto M.: Neuroinflammation in Parkinson’s Disease and Related Disorders: A Lesson from Genetically Manipulated Mouse Models of α-Synucleinopathies. Parkinsons Dis. 2012, doi: 10.1155/2012/271732.
  • Simons M., Nave K. A.: Oligodendrocytes: Myelination and Axonal Support. Cold Spring Harb. Perspect. Biol. 2015, 22, 8, a020479, doi: 10.1101/cshperspect.a020479.
  • Simons M., Trajkovic K.: Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J. Cell Sci. 2006, 119, 4381-4389.
  • Sofroniew M. V., Vinters H. V.: Astrocytes: biology and pathology. Acta Neuropathol. 2010, 119, 7-35.
  • Sun X., Bakhti M., Fitzner D., Schnaars M., Kruse N., Coskun Ü., Kremser C., Willecke K., Kappos L., Kuhle J., Simons M.: Quantified CSF antibody reactivity against myelin in multiple sclerosis. Ann. Clin. Transl. Neurol. 2015, 2, 1116-1123.
  • Sveinbjornsdottir S.: The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 1, 318-324.
  • Takano T., Han X., Deane R., Zlokovic B., Nedergaard M.: Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann. N Y Acad. Sci. 2007, 1097, 40-50.
  • Tognatta R., Miller R. H.: Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. Neuropharmacology 2016, 110, 539-547.
  • Tomassy G. S., Berger D. R., Chen H. H., Kasthuri N., Hayworth K. J., Vercelli A., Seung H. S., Lichtman J. W., Arlotta P.: Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 2014, 344, 319-324.
  • Vila M., Jackson-Lewis V., Guégan Ch., Chu Wu D., Teismann P., Choi Dong-Kuga T. K., Przedborski S.: The role of glial cells in Parkinson’s disease. Neurology 2001, 14, 483-489.
  • Wawrzyniak A.: Analiza porównawcza oligodendrocytów w wybranych obszarach mózgowia u norki amerykańskiej (Neovison vison), lisa rudego (Vulpes vulpes), konia domowego (Equus caballus) i bydła domowego (Bos taurus). Praca hab., Wydz. Medycyny Weterynaryjnej UP, Lublin 2017.
  • Wawrzyniak-Gacek A.: Distribution of various types of oligodendrocytes and cellular localization of iron in the frontal cortex of the adult rat. Folia Morphologica 2002, 61, 115-121.
  • Werner H. B.: Do we have to reconsider the evolutionary emergence of myelin? Front. Cell. Neurosci. 2013, 15, 7:217, doi: 10.3389/fncel.2013.00217.
  • Wilson C. H., Hartline D. K.: Novel organization and development of copepod myelin. ii. nonglial origin. J. Comp. Neurol. 2011, 519, 3281-3305.
  • Yankner B. A., Lu T.: Amyloid beta-protein toxicity and the pathogenesis of Alzheimer disease. J. Biol. Chem. 2009, 20, 284, 4755-4759.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-98b82081-5384-4df7-a98f-e4eb5fb3436e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.