PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 1 |

Tytuł artykułu

The CFD method-based research on damaged ship's flooding process in time-domain

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The flooding process is one of the main concerns of damaged ship stability. This paper combines the volume of fluid (VOF) method incorporated in the Navier-Stokes (NS) solver with dynamic mesh techniques to simulate the flooding of a damaged ship. The VOF method is used to capture the fluid interface, while the dynamic mesh techniques are applied to update the mesh as a result of transient ship motions. The time-domain flooding processes of a damaged barge and a rectangular cabin model are carried out based on the abovementioned method, and the computational results appear compatible with the experimental data. During the flooding process, the motion of the flooding flow at different stages is observed and compared with that observed in real conditions. The time-domain research of the flooding process is the starting point for subsequent establishment of damaged ship’s roll movement and capsizing the mechanism of dead ship condition in wave

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.72-81,fig.,ref.

Twórcy

autor
  • Transportation School, Ludong University, HONGOI Middle Road, 264025 Yantai, China
autor
  • Transportation School, Ludong University, HONGOI Middle Road, 264025 Yantai, China
autor
  • Ulsan Ship and Ocean College, Ludong University, HONGOI Middle Road, 264025 Yantai, China
autor
  • Transportation School, Ludong University, HONGOI Middle Road, 264025 Yantai, China
autor
  • Transportation School, Ludong University, HONGOI Middle Road, 264025 Yantai, China

Bibliografia

  • 1. Cao X Y, Ming R F, Zhang A M. Flooding characteristic simulation study of damaged ship based on 3D SPH method.16th Academic Symposium on China’s marine (Shore) Engineering, 2013, Dalian, China.
  • 2. D.K. Lee, S.Y. Hong, G.-J. Lee. Theoretical and experimental study on dynamic behavior of a damaged ship in wave. Ocean Engineering, 2007, 34: 21-31.
  • 3. Gao Z L, Vassalos D, Gao Q X. Numerical simulation of water flooding into a damaged vessel’s compartment by the volume of fluid method. Ocean Engineering, 2010, 37: 1428-1442.
  • 4. Gao Q X, Vassalos D. Numerical study of damage ship hydrodynamics. Ocean Engineering, 2012, 55: 199-205.
  • 5. Gao Z L, Gao Q X, Vassalos D. Numerical study of a damaged ship flooding in beam seas. Ocean Engineering, 2013, 61: 77-87.
  • 6. Gao Z L, Gao Q X, Vassalos D. Numerical simulation of flooding of a damaged ship. Ocean Engineering, 2011, 38: 1649-1662.
  • 7. IMO. Explanatory Notes to the SOLAS Chapter II-1 Subdivision and Damage Stability Regulations, Resolution MSC. 2008, 281(85).
  • 8. Lemoine, L., Mahé, F., Morisset, N., Bertin, R. Interpretation and design implications of probabilistic damage stability regulation, Proceedings of the 13th International Ship Stability Workshop, 2013: 214–227, Brest, France.
  • 9. Li Y M, Duan W Y, Jin Y L et al. Flooding Process of Damaged Ship Based on CFD. Shipbuilding of China, 2016, 57(2): 149-163.
  • 10. Lyu Z W, Ma K, Liu F. Military ship’s subdivision optimization for reinforcement of anti-wind capacity after damage. Journal of Marine Science and Technology, 2015, 20: 579-589.
  • 11. Manderbacka, T., Mikkola, T., Ruponen, P., Matusiak, J. Transient response of a ship to an abrupt flooding accounting for the momentum flux. Journal of Fluids Structure, 2015, 57: 108–126.
  • 12. Manderbacka, T., Ruponen, P. The impact of the inflow momentum on the transient roll response of a damaged ship.Ocean Engineering, 2016, 120: 346–352.
  • 13. Ruponen, P., Queutey, P., Kraskowski, M., Jalonen, R., Guilmineau, E. On the calculation of cross-flooding time. Ocean Engineering, 2012, 40: 27–39.
  • 14. Ruponen, P., Pulkkinen, A., Laaksonen, J. A method for breach assessment onboard a damaged passenger ship. Applied Ocean Research, 2017, 64: 236-248.
  • 15. Ruponen, P. On the effects of non-watertight doors on progressive flooding in a damaged passenger ship. Ocean Engineering, 2017, 130: 115-125.
  • 16. Ruponen, P. Adaptive time step in simulation of progressive flooding. Ocean Engineering, 2014, 78: 35–44.
  • 17. Ruponen, P. Model tests for the progressive flooding of a box-shaped barge. Helsinki University of Technology, Ship Laboratory Report M-292, 2006.
  • 18. Ruponen, P. Progressive flooding of a damaged passenger ship.Helsinki University of Technology, Helsinki, Finland, 2007.
  • 19. Ruponen, P., Sundell, T., Larmela, M. Validation of a simulation method for progressive flooding. International Shipbuilding Progress, 2007, 54: 305-321.
  • 20. Santos, T.A., Winkle, I.E., Guedes Soares, C. Time domain modelling of the transient asymmetric flooding of Ro-Ro ships.Ocean Engineer. 2002, 29: 667–688.
  • 21. Schreuder, M., Hogström, P., Ringsberg, J.W., Johnson, E., Janson, C.-E. A method for assessment of the survival time of a ship damaged by collision. Journal of Ship Research, 2011, 55 (2): 86–99.
  • 22. Tiago A. Santos, C. Guedes Saores. Study of damaged ship motions taking into account floodwater dynamics. Journal of Marine Science and Technology, 2008, 13(3): 291-307.
  • 23. Tiago A. Santos, C. Guedes Saores. Numerical assessment of factors affecting the survivability of damaged ro-ro ships in waves. Ocean Engineering, 2009, 36(11): 797-809.
  • 24. Vassalos, D., Ikeda, Y., Jasionowski, A., Kuroda, T. Tran si e nt Flooding on Large Passenger Ships. Proceedings of the 7th International Ship Stability Workshop, 2004, Shanghai, China.
  • 25. Ypma, E., Turner, T. An approach to the validation of ship flooding simulation models. Proceedings of the 11th International Ship Stability Workshop, 2010, Wageningen, The Netherlands.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9869b425-5f2d-46c1-a89e-c34bfc88f580
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.