PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 15 | 2 |

Tytuł artykułu

Soilless production of wild rocket as affected by greenhouse coverage with photovoltaic modules

Treść / Zawartość

Warianty tytułu

PL
Bezglebowa produkcja dzikiej rukoli pod wpływem pokrycia szklarni modułami fotowoltaicznymi

Języki publikacji

EN

Abstrakty

EN
Solar photovoltaic greenhouses have become more popular, especially in the countries of southern Europe, due to specific government remuneration policies. However, many agronomic questions need to be addressed. This research was carried out in three types of commercial greenhouses covered with different materials (polycarbonate modules – PCM, traditional – TPM and innovative semi-transparent – IPM photovoltaic modules) with the aim to verify the compatibility of solar energy production with the production of high-quality wild rocket (Diplotaxis tenuifolia L.). IPM may satisfy the entire electricity demand of a commercial greenhouse. Yield for rocket grown in TPM was lower than for IPM and PCM. Antioxidant properties and dry weight decreased as a consequence of decreasing cumulative photosynthetic photon flux density. Nitrate content in TPM was higher (about 10.000 mg·kg⁻¹ FW) than the maximum limits allowed by EC Regulation No. 1258/2011, whereas it was lower in IPM and PCM (1.805 and 668 mg·kg⁻¹ FW, respectively). The results suggest that it is possible to combine solar energy production with high-quality wild rocket production, using innovative semi-transparent PV modules.
PL
Słoneczne szklarnie fotowoltaiczne stały się popularne, zwłaszcza w krajach południowej Europy, ze względu na specyficzną politykę rządową zwrotu kosztów. Jednakże należałoby zająć się niektórymi rozwiązaniami agrotechnicznymi. Niniejsze badanie przeprowadzono w trzech typach komercyjnych szklarni pokrytych różnymi materiałami (moduły polikarbonowe – PCM, typowe – TPM oraz innowacyjne półprzezroczyste – IPM moduły fotowoltaiczne) w celu zweryfikowania kompatybilności produkcji energii słonecznej z produkcją dzikiej rukoli o wysokiej jakości (Diplotaxis tenuifolia L.). IPM może zaspokoić całość wymagań elektryczności komercyjnej szklarni. Plon rukoli rosnącej w TPM był niższy niż dla IPM i PCM. Właściwości antyoksydacyjne oraz sucha masa obniżyły się w rezultacie zmniejszającego się skumulowanego zagęszczania strumienia fotonów. Zawartość azotanów w TPM była wyższa (około 10 000 mg·kg⁻¹ FW) niż maksymalne granice dopuszczane przez Regulację UE Nr 1258/2011, a niższa niż w IPM i PCM (odpowiednio 1805 i 668 mg·kg⁻¹ FW). Wyniki sugerują, że możliwe jest połączenie produkcji energii świetlnej z produkcją wysokiej jakości dzikiej rukoli przy użyciu innowacyjnych półprzezroczystych modułów PV.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

2

Opis fizyczny

p.129-142,fig.,ref.

Twórcy

autor
  • National Research Council of Italy, Bari, Italy
autor
  • University of Bari Aldo Moro, Bari, Italy
  • Institute of Sciences of Food Production, CNR - National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
autor
  • National Research Council of Italy, Bari, Italy
autor
  • National Research Council of Italy, Bari, Italy
  • University of Bari Aldo Moro, Bari, Italy
autor
  • National Research Council of Italy, Bari, Italy

Bibliografia

  • Arnao, M.B., Cano, A., Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem., 73,239-244.
  • Bennett, R.N., Mellon, F.A., Botting, N.P., Eagles, J., Rosa, E.A.S., Williamson, G. (2002). Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. Phytochemistry, 61, 25-30.
  • Bian, Z.H., Yanga, Q.C., Liua, W.K. (2015). Effects of light ąuality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J. Sci. Food Agr., 95, 869-877.
  • Blom-Zandstra, M. (1989). Nitrate accumulation in vegetables and its relationship to ąuality. Ann. Appl. Biol., 115, 553-561.
  • Bonasia, A., Conversa, G., Gonnella, M., Serio, F., Santamaria, P. (2008). Effect of ammonium and nitrate nutrition on yield and ąuality in endive. J. Hortic. Sci. Biotech., 83, 64-70.
  • Bouchaaba, Z., Santamaria, P., Choukr-Allah, R., Lamaddalena, N., Montesano, F.F. (2015). Open-cycle drip vs closed-cycle subirrigation: Effects on growth and yield of greenhouse soilless green bean. Sci. Hortic., 182, 77-85.
  • Brazaityte, A., Sakalauskiene, S., Samuoliene, G., Jankauskiene, J., Virsile, A., Novićkovas, A., Sirtautas, R., Miliauskiene, J., Vastakaite, V., Dabasinskas, L., Duchovskis, P. (2015). The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem., 173, 600-606.
  • Castellano, S. (2014). Photovoltaic greenhouses evaluation of shading effect and its influence on agricultural performances. J. Agr. Eng.,4,168-175.
  • Cavaiuolo, M., Ferrante, A. (2014). Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients, 6, 1519-1538.
  • Commission Regulation (2015). EU Regulation No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs. Available: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:3201TR1258
  • Cossu, M., Murgia, L., Ledda, L., Deligios, P.A., Sirigu, A., Chessa, F., Pazzona, A. (2014). Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity. Appl. Energ., 133, 89-100.
  • Davalos, A., Gomez-Cordoves, C., Bartolome, B. (2004). Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agr. Food Chem., 52,48-54.
  • Durazzo, A., Azzini, E., Lazze, M.C., Raguzzini, A., Pizzala, R., Maiani, G. (2013). Italian wild rocket [Diplotaxis Tenuifolia (L.) DC.]. Influence of agricultural practices on antioxidant molecules and on cytotoxicity and antiproliferative effects. Agriculture, 2,285-298.
  • Egea-Gilabert, C., Fernandez, J.A., Migliaro, D., Martlnez-Sanchez, J.J., Vicente, M.J. (2009). Genetic variability in wild vs. cultivated Eruca vesicaria populations as assessed by morphological, agronomical and molecular analyses. Sci. Hortic. Amsterdam, 121(3), 260-266.
  • European Food Safety Authority (2008). Opinion of the Scientific Panel on Contaminants in the Food Chain on a request for the European Commission to perform a scientific risk assessment on nitrate in vegetables. EFSA Journal, 689,1-79.
  • Ferrante, A., Incrocci, L., Maggini, R., Serra, G., Tognoni, F. (2003). Preharvest and postharvest strategies for reducing nitrate content in rocket (Eruca sativa L.). Acta Hort., 628,153-159.
  • Francis, F.J., Clydesdale, F.M. (1975). Food colorimetry: theory and applications. Westport, CT: AVI Publishing.
  • Geoola, F., Peiper, U.M. (1994). Outdoor testing of the condensation characteristics of plastic film covering materials using a model greenhouse. J. Agr. Eng. Res., 57, 167-172.
  • Jin, J., Koroleva, O.A., Gibson, T., Swanston, J., Magan, J., Zhang, Y., Rowland, I.R., Wagstaff, C. (2009). Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J. Agr. Food Chem., 57, 5227-5234.
  • Johnson, C.M., Stout, P.R., Broyer, T.C., Carlton, A.B. (1957). Comparative chlorine requirements of different plant species. Plant Soil, 8, 337-353.
  • Joint Research Centre (2015). Interactive maps for PV estimation. Available: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
  • Kadowaki, M., Yano, A., Ishizu, F., Tanaka, T., Noda, S. (2012). Effects of greenhouse photovoltaic array shading on Welsh onion growth. Bios. Eng., 111, 290-297.
  • Hall, M.K.D., Jobling, J.J., Rogers, G.R. (2012). Some perspectives on rocket as a vegetable crop: a review. Vege. Crop. Res. Buli., 76,21-41.
  • Hord, N.G., Tang, Y, Bryan, N.S. (2009). Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J. Clin. Nutr., 90,1-10.
  • Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J.A., Deemer, E.K. (2002). Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidant using randomly methylated P-cyclodextrin as the solubility enhancer. J. Agr. Food Chem., 50, 1815-1821.
  • Minuto, G., Bruzzone, C., Tinivella, F., Delfino, G., Minuto, A. (2009). Fotovoltaico sui tetti delle serre per produrre anche energia. Inf. Agr. (Suppl.), 10, 16-21 (in Italian, abstract in English).
  • Nurzyńska-Wierdak, R. (2015). Nutritional and energetic value of Eruca sativa Mili. Leaves. Acta Sci. Pol. Hortorum Cultus, 4, 191-199.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evance, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio.Med., 26,1231-1237.
  • Regione Sardegna (2010). Decreto N. 1820/DecA/73 del 20/07/2010. Available: http://www.regione.sardegna.it/documenti/l_22_20100720131025.pdf
  • Regione Puglia (2012). B.U.R.P. n. 20 del 20/02/2012, pages 3623-3629. Available: http://www.sanita.puglia.it/portal/page/portal/SAUSSC/Aziende%20Sanitarie/AZIENDE%200SPED ALIERE/Azienda%200spedaliero%20Universitaria%20Consorziale%20Policlinico/Organo%20di% 20Indirizzo/N20_08_02_12[l].pdf
  • Rocamora, M.C., Tripanagnostopoulos, Y. (2006). Aspects of PV/T solar system application for ventilation needs in greenhouses. Acta Hort., 719, 239-245.
  • Sangpradit, K. (2014). Study of the solar transmissivity of plastic cladding materials and influence of dust and dirt on greenhouse cultivations. Energ. Proc., 56, 566-573.
  • Santamaria, P., Elia, A., Gonnella, M. (1997). Changes in nitrate accumulation and growth of endive plants during the light period as affected by nitrogen level and form. J. Plant Nutr., 20, 1255-1266.
  • Santamaria, P., Elia, A., Serio, F., Todaro, E. (1999). A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric., 79,1882-1888.
  • Santamaria, P., Gonnella, M., Elia, A., Parente, A., Serio, F. (2001). Ways of reducing rocket salad nitrate content. Acta Hortic., 548, 529-536.
  • Santamaria, P., Elia, A., Serio, F. (2002). Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically grown rocket salad genotypes. J. Plant Nutr., 25, 245-258.
  • Santamaria, P. (2006). Nitrate in vegetables: toxicity, content, intake and EC regulation. J. Sci. Food Agric., 86, 10-17.
  • Sarasa-Maestro, C.J., Dufo-López, R., Bernal-Agustin, J.L. (2013). Photovoltaic remuneration policies in the European Union. Energ. Policy, 55, 317-328.
  • Steingrover, E., Ratering, P., Siesling, J. (1986). Daily changes in uptake, reduction and storage of nitrate in spinach grown at Iow light intensity. Physiol. Plant., 66, 550-556.
  • von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., Suay-Cortes, R. (2000). Review of structural and functional characteristics of greenhouses. J. Agr. Eng. Res., 75, 1-16.
  • Weiguo, F., Pingping, L., Yanyou, W., Jianjian, T. (2012). Effects of different light intensities on anti-oxidative enzyme activity, ąuality and biomass in lettuce. Hortic. Sci., 39, 129-134.
  • Weitzberg, E., Lundberg, J.O. (2013). Novel aspects of dietary nitrate and human health. Ann. Rev.Nutr.,33,129-159.
  • Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S., Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agr. Food Chem., 52,4026-4037.
  • Yano, A., Furue, A., Kadowaki, M., Tanaka, T., Hiraki, E., Miyamoto, M., Ishizu, F., Noda, S. (2009). Electrical energy generated by photovoltaic modules mounted inside the roof of a north-south oriented greenhouse. Biosyst. Eng., 103, 228-238.
  • Yano, A., Kadowaki, M., Furue, A., Tamaki, N., Tanaka, T., Hiraki, E., Kato, Y., Ishizu, F., Noda, S. (2010). Shading and electrical features of a photovoltaic array mounted inside the roof of an east-west oriented greenhouse. Biosyst. Eng., 106, 367-377.
  • Yano, A., Onoe, M., Nakata, J. (2014). Prototype semi-transparent photovoltaic modules for greenhouse roof applications. Biosyst. Eng., F22, 62-73.
  • Zulueta, A., Esteve, M.J., Frigola, A. (2009). ORAC and TEAC assays comparison to measure the antioxidant capacity offood products. Food Chem., 114, 310-316.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-984812c3-de1b-49c3-aba8-0a797c1c52f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.