PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 4 |

Tytuł artykułu

Soil texture distribution simulation and risk assessment using transition probability-based geostatistics

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Three dimensional soil textural structure in a township was conditionally simulated using a transition pro- bability-based indicator geostatistical method based on 270 soil texture samples from 27 profiles. Additionally the distribution of soil profiles lacking clay interlayers (indicating high irrigation water and nutrient leaching risk) was analyzed using 500 realizations from the simulation. The results indicated that the simulation could predict the soil texture distribution with low uncertainties using the existing data, and the predicted soil map (0-10 cm) formed by the maximum probable soil textures also exhibited a good agreement with the legacy soil survey map. For water and nutrient leaching risk analysis, the areas lacking clay interlayer could be located; however, their distribution was still highly uncertain if based only on the existing sampling data. That means supplementary sampling in future is required for the risk assessment, and the existing study can help to optimise the sampling points and their distribution. Generally, the transition probability-based geostatistical simulation, as a stochastic conditional simulation method, exhibited its potential in soil texture spatial reproduction and related risk assessment.

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.447-457,fig.,ref.

Twórcy

autor
  • Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
  • Department of Renewable Resources, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E3, Canada
autor
  • Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
autor
  • Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
autor
  • Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
  • University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
autor
  • Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
  • University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

Bibliografia

  • Berner E.K. and Berner R.A., 2012. Global Environment: Water, Air, and Geochemical Cycles. Princeton University Press, Princeton, NJ, USA.
  • Bocchi S., Castrignanò A., Fornaro F., and Maggiore T., 2000. Application of factorial kriging for mapping soil variation at field scale. Eur. J. Agron., 13, 295-308.
  • Carle S.F., 1997. Integration of geologic interpretation into geostatistical simulation. Annual Conf. Int. Association of Mathematical Geology (IAMG), September 22-27, Barcelona, Spain.
  • Carle S.F., 1999. T-PROGS: Transition Probability Geostatistical Software Version 2.1. Hydrologic Sciences Graduate Group, University of California, Davis, CA, USA.
  • Carle S.F. and Fogg G.E., 1996. Transition probability-based indicator geostatistics. Math. Geol., 28, 453-476.
  • Carle S.F. and Fogg G.E., 1997. Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Math. Geol., 29, 891-918.
  • Condon A.G., Richards R.A., and Farquhar G.D., 1992. The effect of variation in soil water availability, vapour pressure deficit and nitrogen nutrition on carbon isotope discrimination in wheat. Aust. J. Agr. Res., 43, 935-947.
  • Cressie N.A.C., 1993. Statistics for spatial data. Wiley Press, New York, USA.
  • Delbari M., Afrasiab P., and Loiskandl W., 2009. Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. Catena, 79, 163-169.
  • Deutsch C.V. and Journel A.G., 1998. GSLIB, Geostatistical Software Library and User’s Guide. Oxford University Press, New York, USA.
  • Ek M. and Cuenca R.H., 1994. Variation in soil parameters: Implications for modeling surface fluxes and atmospheric boundary-layer development. Bound-lay. Meteorol., 70, 369-383.
  • Funtowicz S.O. and Ravetz J.R., 1990. Uncertainty and Quality in Science for Policy. Kluwer Academic Publishers, Dordrecht, Boston, USA.
  • Golchin A., Oades J.M., Skjemstad J.O., and Clarke P., 1994. Soil structure and carbon cycling. Aust. J. Soil Res., 32, 1043.
  • Gonzalez O.J. and Zak D.R., 1994. Geostatistical analysis of soil properties in a secondary tropical dry forest, St. Lucia, West Indies. Plant Soil, 163, 45-54.
  • Goovaerts P., 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89, 1-45.
  • Goovaerts P., Webster R., and Dubois J.P., 1997. Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environ. Ecol. Stat., 4, 49-64.
  • Juang K.W., Chen Y.S., and Lee D.Y., 2004. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environ. Pollut., 127, 229-238.
  • Katz R.W., 2002. Techniques for estimating uncertainty in climate change scenarios and impact studies. Climate Res., 20, 167-185.
  • Kaye J.P., McCulley R.L., and Burke I.C., 2005. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Global. Change. Biol., 11, 575-587.
  • Knapp A.K., Fahnestock J.T., Hamburg S.P., Statland L.B., Seastedt T.R., and Schimel D.S., 1993. Landscape patterns in soil-plant water relations and primary production in tallgrass prairie. Ecology, 74, 549.
  • Li J. and Heap A.D., 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecological Informatics, 6, 228-241.
  • Li X., Chang S.X., and Salifu K.F., 2013. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environ. Reviews, 21, 1-10.
  • Li X.P., Zhang J.B., Liu J.T., Liu J.L., Zhu A.N., Lv F., and Zhang C.Z., 2010. A modified checkbook irrigation method based on GIS-coupled model for regional irrigation scheduling. Irrigation. Sci., 29, 115-126.
  • Li Y., Chen D.L., White R.E., Zhu A.N., and Zhang J.B., 2007. Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions. Geoderma, 138, 261-271.
  • Meul M. and Van Meirvenne M., 2003. Kriging soil texture under different types of nonstationarity. Geoderma, 112, 217-233.
  • Phillips J.D., 2001. Contingency and generalization in pedology, as exemplified by texture-contrast soils. Geoderma, 102, 347-370.
  • Racz A.J., Fisher A.T., Schmidt C.M., Lockwood B.S., and Los Huertos M., 2012. Spatial and temporal infiltration dynamics during managed aquifer recharge. Ground Water, 50, 562-570.
  • Regan H.M., Colyvan M., and Burgman M.A., 2002. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl., 12, 618-628.
  • Smith E., 2002. Uncertainty analysis. In: Encyclopedia of Environmetrics (Eds A.H. El-Shaarawi, W.W. Piegorsch). Wiley Press, Chichester, UK.
  • Tian S.P., 1982. Soil map of Fengqiu County. Fengqiu County Bureau of Surveying and Mapping, Fengqiu, China.
  • Tobler W.R., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234-240.
  • Wang E., Cresswell H., Bryan B., Glover M., and King D., 2009. Modelling farming systems performance at catchment and regional scales to support natural resource management. NJAS-Wageningen J. Life Sci., 57, 101-108.
  • Wang Y.Q., Shao M.A., and Liu Z.P., 2010. Large-scale spatial variability of dried soil layers and related factors across the entire Loess Plateau of China. Geoderma, 159, 99-108.
  • Wang Z.Q., 1987. Agriculture Development and Management Project in Tianranwenyanqu Basin (in Chinese). Sci. Press of China, Beijing, China.
  • Zettl J., Lee Barbour S., Huang M., Si B., and Leskiw L., 2011. Influence of textural layering on field capacity of coarse soils. Can. J. Soil Sci., 91, 133-147.
  • Zhao Y.C., Shi X.Z., Yu D.S., Wang H.J., and Sun W.X., 2005. Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. Chemosphere, 59, 1527-1535.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9828570d-5baa-40bb-b977-b24a9a7a7880
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.