PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 71 | 4 |

Tytuł artykułu

Solar radiation affects bloat potential of wheat forage

Treść / Zawartość

Warianty tytułu

PL
Promieniowanie słoneczne wpływa na wzrost potencjału paszowego pszenicy (Triticum aestivum L.)

Języki publikacji

EN

Abstrakty

EN
Frothy bloat is a serious digestive disorder in cattle (Bos taurus L.) grazing winter wheat (Triticum aestivum L.) pastures in the Southern Great Plains of the USA. Wheat plant metabolism may be one of the factors involved in bloat occurrence. In a series of experiments conducted during 2004–2007, we evaluated the effects of solar radiation intensity (ambient, 100% vs. reduced, 25%), a short-time (24 h vs. 48 h) exposure to solar radiation, and forage allowance (high, 18 kg vs. low, 6 kg DM/100 kg body weight) on seasonal concentration of phenolic compounds and foam strength (a measure of bloat potential) of wheat forage ‘Cutter’. Reduced solar radiation decreased total phenolic concentration and increased foam strength when compared to ambient solar radiation. Forage allowance interacted with solar radiation and short-term exposure treatments in determining phenolic concentrations; however, the effects were inconsistent during and among growing seasons. Concentration of phenolic compounds responded rapidly to sudden changes in weather patterns (passing cold fronts) that were usually associated with significant decrease in solar radiation intensity and temperature. Solar radiation intensity was positively correlated with total phenolic concentration and explained 62% to 72% of the variation in total phenolic concentration. Correlation between temperature and total phenolic concentration varied among growing seasons and explained 9–17% of the variation in total phenolic concentration. Results suggest that phenolic concentration in wheat forage is correlated with solar radiation. The decrease in phenolic concentration and resulting increase of bloat potential are especially pronounced during sudden changes in weather patterns during winter.
PL
Wzdęcia są poważnym zaburzeniem trawienia u bydła (Bos taurus L.) spasanego na pastwiskach pszenicy ozimej (Triticum aestivum L.) w południowych rejonach Stanów Zjednoczonych. Metabolizm pszenicy może być jednym z czynników związanych z występowaniem wzdęć. W serii eksperymentów przeprowadzonych w latach 2004–2007 oceniono wpływ (i) natężenia promieniowania słonecznego (naturalne natężenie, 100% w stosunku do zmniejszonego natężenia, 25%), (ii) krótkotrwałego (24–48 godz.) wystawienia na działanie promieniowania słonecznego i (iii) ilości dostępnej masy zielonej (wysoki poziom, 18 kg DM / 100 kg w porównaniu z niskim poziomem, 6 kg DM / 100 kg masy ciała) na sezonowe stężenie prostych związków fenolowych i stabilność pęcherzyków powietrza w homogenacie z zielonej masy pszenicy ‘Cutter’ (miara potencjału wzdęcia). Zmniejszone promieniowanie słoneczne wywołało redukcję stężenia związków fenolowych i zwiększyło stabilność pęcherzyków powietrza w homogenacie z zielonej masy pszenicy w porównaniu do naturalnego stężenia promieniowania słonecznego. Stężenie związków fenolowych określone było przez współdziałanie między natężeniem promieniowania słonecznego, czasem działania promieniowania słonecznego i ilością dostępnej paszy zielonej, jednak efekty były zmienne podczas i pomiędzy sezonami wegetacyjnymi. Stężenie związków fenolowych szybko reagowało na nagłe zmiany pogody (przechodzące zimne fronty), które zwykle wiązały się ze znacznym spadkiem natężenia promieniowania słonecznego i temperatury. Natężenie promieniowania słonecznego było dodatnio skorelowane z całkowitym stężeniem związków fenolowych i wyjaśniało 62% do 72% zmian w stężeniu związków fenolowych w masie zielonej pszenicy. Korelacja pomiędzy temperaturą a całkowitym stężeniem związków fenolowych zależała od sezonu wegetacyjnego i wyjaśniała 9–17% zmian w całkowitym stężeniu związków fenolowych. Wyniki sugerują, że stężenie związków fenolowych w masie zielonej pszenicy jest skorelowane z natężeniem promieniowania słonecznego. Spadek stężenia związków fenolowych i wynikający z tego wzrost potencjału wzdęć u bydła spasanego na pszenicy są szczególnie wyraźne podczas nagłych zmian pogodowych w okresie zimowym.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

71

Numer

4

Opis fizyczny

Article: 1754 [20 p.], fig.,ref.

Twórcy

  • Texas AgriLife Research, PO Box 1658, Vernon, TX 76384, USA
autor
  • Texas AgriLife Research, PO Box 1658, Vernon, TX 76384, USA
autor
  • Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 382 W.Street Rd., Kennett Square, PA 19348, USA
autor
  • Department of Agricultural and Environmental Sciences, Tuskegee University, 1200 W Montgomery Rd., Tuskegee, AL 36088, USA

Bibliografia

  • Pinchak WE, Worral WD, Caldwell SP, Hunt LJ, Worral HJ, Conoly M. Interrelationships of forage and steer growth dynamics on wheat pasture. Journal of Range Management. 1996;49:126–130. https://doi.org/10.2307/4002681
  • Virgona JM, Gummer FAJ, Angus JA. Effects of grazing on wheat growth, development, yield, water use and nitrogen use. Aust J Agric Res. 2006;57:1307–1319. https://doi.org/10.1071/AR06085
  • Tian LH, Bell LW, Shen YY, Whish JPM. Dual-purpose use of winter wheat in Western China: cutting time and nitrogen application effects on phenology, forage production, and grain yield. Crop Pasture Sci. 2012;63:520–528. https://doi.org/10.1071/CP12101
  • Arzadun MJ, Arroquy JI, Laborde HE, Brevedan RE. Grazing pressure on beef and grain production of dual-purpose wheat in Argentina. Agron J. 2003;95:1157–1162. https://doi.org/10.2134/agronj2003.1157
  • Rodríguez A, Trapp JN, Walker OL, Bernardo DJ. A wheat grazing system model for the United States Southern Plains. I. Model description and performance. Agric Syst. 1990,33:41–59. https://doi.org/10.1016/0308-521X(90)90069-3
  • Arif M, Khan MA, Akbar H, Sajjad, Ali S. Prospects of wheat as a dual purpose crop and its impact on weeds. Pakistani Journal of Weed Science Research. 2006;12:13–17.
  • Ryan J, Pala M, Masri S, Singh M, Harris H. Rainfed wheat-based rotations under Mediterranean conditions: crop sequences, nitrogen fertilization, and stubble grazing in relation to grain and straw quality. Eur J Agron. 2008;28:112–118. https://doi.org/10.1016/j.eja.2007.05.008
  • Kim KS, Anderson JD, Newell MA, Grogan SM, Byrne PF, Baenziger PS, et al. Genetic diversity of Great Plains hard winter wheat germplasm for forage. Crop Sci. 2016;56:2297–2305. https://doi.org/10.2135/cropsci2015.08.0519
  • Hossain I, Epplin FM, Krenzer EG Jr. Planting date influence on dual-purpose winter wheat forage yield, grain yield, and test weight. Agron J. 2003;95:179–1188. https://doi.org/10.2134/agronj2003.1179
  • Bartley EE, Barr GW, Mickelsen R. Bloat in cattle. XVII. Wheat pasture bloat and its prevention with poloxalene. J Anim Sci. 1975;41:752–759. https://doi.org/10.2527/jas1975.413752x
  • Cole HH, Boda JM. Continued progress toward controlling bloat. A review. J Dairy Sci. 1960;43:1585–1614. https://doi.org/10.3168/jds.S0022-0302(60)90379-9
  • Aerts RJ, Barry TN, McNabb WC. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agricultural Ecosystems and Environment. 1999;75:1–12. https://doi.org/10.1016/S0167-8809(99)00062-6
  • Morris CA, Cockrem FRM, Carruthers VR, McIntosh JT, Cullen NG. Response to divergent selection for bloat susceptibility in dairy cows. New Zealand Journal of Agricultural Research. 1991;34:75–83. https://doi.org/10.1080/00288233.1991.10417795
  • Nagaraja TG, Newbold CJ, van Nevel CJ, Meyer DI. Manipulation of ruminal fermentation. In: Hobson PN, Stewart CS, editors. The rumen microbial ecosystem. New York, NY: Blackie Academic; 1997. p. 523–632. https://doi.org/10.1007/978-94-009-1453-7_13
  • Min BR, Pinchak WE, Hernandez C, Hume ME. Grazing activity and ruminal bacterial population associated with frothy bloat in steers grazing winter wheat. Professional Animal Scientist. 2013;29:179–187. https://doi.org/10.15232/S1080-7446(15)30217-5
  • Pitta DW, Pinchak WE, Indugu N, Vecchiarelli B, Sinha R, Fulford JD. Metagenomic analysis of the rumen microbiome of steers with wheat-induced frothy bloat. Front Microbiol. 2016;7:689. https://doi.org/10.3389/fmicb.2016.00689
  • Horn GW. Growing cattle on winter wheat pasture: management and herd health considerations. Vet Clin North Am Food Anim Pract. 2006;22:335–356. https://doi.org/10.1016/j.cvfa.2006.03.008
  • Lean IJ, Golder HM, Hall MB. Feeding, evaluating, and controlling rumen function. Vet Clin North Am Food Anim Pract. 2014;30:539–575. https://doi.org/10.1016/j.cvfa.2014.07.003
  • Hall JW, Majak W. Effect of time of grazing or cutting and feeding on the incidence of alfalfa bloat in cattle. Can J Anim Sci. 1995;75:271–273. https://doi.org/10.4141/cjas95-041
  • Malinowski DP, Pitta DW, Pinchak WE, Min B, Emendack Y. Effect of N fertilization on diurnal phenolic concentration and foam strength in forage of hard red wheat (Triticum aestivum) cv. Cutter. Crop Pasture Sci. 2011;62:656–665. https://doi.org/10.1071/CP11078
  • Flythe M, Kagan I. Antimicrobial effect of red clover (Trifolium pratense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr Microbiol. 2011;61:125–131. https://doi.org/10.1007/s00284-010-9586-5
  • Branine ME, Gaylean ML. Influence of grain and monensin supplementation on ruminal fermentation, intake, digester kinetics, and incidence and severity of frothy bloat in steers grazing winter wheat pasture. J Anim Sci. 1990;68:1139–1150. https://doi.org/10.2527/1990.6841139x
  • Min BR, Pinchak WE, Fulford JD, Puchala R. Effect of feed additives on in vitro and in vivo rumen characteristics and frothy bloat dynamics in steers grazing wheat pasture. Animal Feed Science Technology. 2005;123–124:615–629. https://doi.org/10.1016/j.anifeedsci.2005.04.050
  • Min BR, Pinchak WE, Fulford JD, Puchala R. Wheat pasture bloat dynamics, in vitro ruminal gas production and potential bloat mitigation with condensed tannins. J Anim Sci. 2005;83:1322–1331.
  • Malinowski DP, Kramp BA, Min BR, Baker J, Pinchak WE, Rudd JC. Physiological and morphological traits for selection of dual-use wheat with improved forage production. In: Schwartz RC, Baumhardt RL, Bell JM, editors. Proceedings of the Southern Conservation Systems Conference; 2006 Jun 26–28; Amarillo, TX, USA. Bushland, TX: USDA–ARS Conservation and Production Research Laboratory; 2006. p. 246–247.
  • MacKown CT, Carver BR, Edwards TJ. Occurrence of condensed tannins in wheat and feasibility for reducing pasture bloat. Crop Sci. 2008;48:2470–2480. https://doi.org/10.2135/cropsci2008.01.0020
  • Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001;24:1337–1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x
  • Olenichenko NA, Ossipov VI, Zagoskina NV. Effect of cold hardening on the phenolic complex of winter wheat leaves. Russ J Plant Physiol. 2006;53:495–500. https://doi.org/10.1134/S1021443706040108
  • Mpofu A, Beta T, Sapirstein HD. Effects of genotype, environment and genotype/environment interaction on the antioxidant properties of wheat. In: Yu L, editor. Wheat antioxidants. Hoboken, NJ: John Wiley and Sons; 2008. p. 24–41.
  • Oskoueian E, Abdullah N, Oskoueian A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res Int. 2013;2013:349129. https://doi.org/10.1155/2013/349129
  • Jung HJG. Inhibition of structural carbohydrate fermentation by forage phenolics. Journal of the Science of Food and Agriculture. 1985;36:74–80. https://doi.org/10.1002/jsfa.2740360204
  • Waterman PG, Mole S. Methods in ecology: analysis of phenolic plant metabolites. Oxford: Blackwell Scientific Publishers; 1994.
  • Jones WT, Lyttleton JW. Bloat in cattle. XXIX. The foaming properties of clover proteins. New Zealand Journal of Agricultural Research. 1969;12:31–46. https://doi.org/10.1080/00288233.1969.10427075
  • Okine EK, Mathison GW, Hardin RT. Relationships between passage rates of rumen fluid and particulate matter and foam production in rumen contents of cattle fed on different diets ad lib. Br J Nutr. 1989;61:387–395. https://doi.org/10.1079/BJN19890125
  • McDougall EI. Studies on ruminant saliva. 1. The composition of sheep’s saliva. Biochemistry Journal. 1948;43:99–109. https://doi.org/10.1042/bj0430099
  • SAS Institute Inc. Base SAS 9.3 procedures guide: statistical procedures. Cary, NC: SAS Institute Inc.; 2011.
  • Malinowski, DP, Pinchak WE, Min BR, Rudd JC, Baker J. Phenolic compounds affect bloat potential of wheat forage. Crop, Forage and Turfgrass Management. 2015;1(1):2015-0146. https://doi.org/10.2134/cftm2015.0146
  • Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 2002;5:218–223. https://doi.org/10.1016/S1369-5266(02)00256-X
  • Hakala K, Jauhiainen L, Koskela T, Käyhkö P, Vorne V. Sensitivity of crops to increased ultraviolet radiation in northern growing conditions. J Agron Crop Sci. 2002;188:8–18. https://doi.org/10.1046/j.1439-037x.2002.00536.x
  • Ambasht NK, Agrawal M. Effects of enhanced UV-B radiation and tropospheric ozone on physiological and biochemical characteristics of field grown wheat. Biol Plant. 2003;47:625–628. https://doi.org/10.1023/B:BIOP.0000041076.95209.c3
  • Shamloo M, Babawale EA, Furtado A, Henry RJ, Eck PK, Jones PJH. Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. Sci Rep. 2017;7:9133. https://doi.org/10.1038/s41598-017-09681-5
  • Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, Schmitz R, et al. Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot. 1998;49:953–965. https://doi.org/10.1093/jxb/49.323.953
  • Karimi E, Jaafar HZE, Ghasemzadeh A, Ibrahim MH. Light intensity effects on production and antioxidant activity of flavonoids and phenolic compounds in leaves, stems and roots of three varieties of Labisia pumila Benth. Aust J Crop Sci. 2013;7:1016–1023.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-980a5f26-0181-4f3b-bf66-60e8c2082e77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.