PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 86 | 3 |

Tytuł artykułu

In vitro cloning potential and phytochemical evaluations of aneuploid individuals produced from reciprocal crosses between diploid and triploid in Echinacea purpurea L.

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Aneuploidy often presents large variations in morphology, physiology, biochemistry, and genetics owing to karyotypic imbalance. This study aimed to evaluate the efficacy of aneuploid breeding in Echinacea purpurea L, an important medicinal plant. Reciprocal crosses between diploid and triploid plants were performed to generate aneuploid plants. Cross with triploid as female parent resulted in increased production of aneuploid individuals (19 of 23; 82.61%), while using diploid as female parent yielded much higher percentage of diploid progenies (130 of 133; 97.74%). Each aneuploid had particular karyotypic characteristics compared to the parents. The proportions of median, submedian, and subterminal centromere location chromosomes in gross chromosomes among aneuploids and two parents showed large variations. Although aneuploids had relatively lower adventitious bud regeneration rates than their parents, almost half of them looked morphologically normal, with high survival rates when transplanted to ex vitro conditions. Among the bioactive compounds assessed, cichoric acid and chlorogenic acid contents were extremely encouraging. Most aneuploids had higher cichoric acid and chlorogenic acid contents than their parents. For example, A2 had the highest cichoric acid content of 21.98 mg/g dry weight, more than twice the values of diploid and triploid. Meanwhile, A21 had the highest chlorogenic acid content of 1.84 mg/g, approximately five times more than the parental values. Eleven superior aneuploid lines were successfully screened as breeding candidates. The present findings indicated E. purpurea is highly tolerant of karyotypic imbalance and aneuploid plants could serve as prospective breeding resources in E. purpurea.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

86

Numer

3

Opis fizyczny

Article 3556 [16p.],fig.,ref.

Twórcy

autor
  • Genetic Engineering Laboratory, College of Life Sciences, South China Agricultural University, Guangzhou, Tian He 510642, China
autor
  • Genetic Engineering Laboratory, College of Life Sciences, South China Agricultural University, Guangzhou, Tian He 510642, China
autor
  • Genetic Engineering Laboratory, College of Life Sciences, South China Agricultural University, Guangzhou, Tian He 510642, China
autor
  • Genetic Engineering Laboratory, College of Life Sciences, South China Agricultural University, Guangzhou, Tian He 510642, China
autor
  • Genetic Engineering Laboratory, College of Life Sciences, South China Agricultural University, Guangzhou, Tian He 510642, China
autor
  • Genetic Engineering Laboratory, College of Life Sciences, South China Agricultural University, Guangzhou, Tian He 510642, China
  • Research Center of South China Medicinal Plants, South China Agricultural University, Guangzhou, Tian He 510642, China
  • Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, Tian He 510642, China
autor
  • Genetic Engineering Laboratory, College of Life Sciences, South China Agricultural University, Guangzhou, Tian He 510642, China
  • Research Center of South China Medicinal Plants, South China Agricultural University, Guangzhou, Tian He 510642, China
  • Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, Tian He 510642, China

Bibliografia

  • 1. Thao NTP, Ureshino K, Miyajima I, Ozaki Y, Okubo H. Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell Tissue Organ Cult. 2003;72(1):19–25. https://doi.org/10.1023/A:1021292928295
  • 2. Zhang XY, Hu CG, Yao JL. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol. 2010;167(2):88–94. https://doi.org/10.1016/j.jplph.2009.07.006
  • 3. Makarevitch I, Harris C. Aneuploidy causes tissue-specific qualitative changes in global gene expression patterns in maize. Plant Physiol. 2010;152(2):927–938. https://doi.org/10.1104/pp.109.150466
  • 4. Zhu B, Shao YJ, Pan Q, Ge XH, Li ZY. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L. Front Plant Sci. 2015;6:763. https://doi.org/10.3389/fpls.2015.00763
  • 5. Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L. Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics. 2010;186(4):1231–1245. https://doi.org/10.1534/genetics.110.121079
  • 6. Jadwiszczak KA, Jabłońska E, Kłosowski S, Banaszek A. Aneuploids in the shrub birch Betula humilis populations in Poland. Acta Soc Bot Pol. 2011;80(3):233–235. https://doi.org/10.5586/asbp.2011.015
  • 7. Zhang Y, Zhu ML, Dai SL. Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. J Syst Evol. 2013;51(3):335–352. https://doi.org/10.1111/j.1759-6831.2012.00235.x
  • 8. Barnes J, Anderson LA, Gibbons S, Phillipson JD. Echinacea species [Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench]: a review of their chemistry, pharmacology and clinical properties. J Pharm Pharmacol. 2005;57(8):929–954. https://doi.org/10.1211/0022357056127
  • 9. Barrett B. Medicinal properties of Echinacea: a critical review. Phytomedicine. 2003;10(1):66–86. https://doi.org/10.1078/094471103321648692
  • 10. Luo XB, Chen B, Yao SZ, Zeng JG. Simultaneous analysis of caffeic acid derivatives and alkamides in roots and extracts of Echinacea purpurea by high-performance liquid chromatography-photodiode array detection-electrospray mass spectrometry. J Chromatogr A. 2003;986(1):73–81. https://doi.org/10.1016/S0021-9673(02)01922-2
  • 11. Bauer R, Remiger P. TLC and HPLC analysis of alkamides in Echinacea drugs. Planta Med. 1989;55(4):367–371. https://doi.org/10.1055/s-2006-962030
  • 12. Wagner H, Stuppner H, Schäer W, Zenk M. Immunologically active polysaccharides of Echinacea purpurea cell cultures. Phytochemistry. 1988;27(1):119–126. https://doi.org/10.1016/0031-9422(88)80601-0
  • 13. Lee SU, Shin CG, Lee CK, Lee YS. Caffeoylglycolic and caffeoylamino acid derivatives, halfmers of L-chicoric acid, as new HIV-1 integrase inhibitors. Eur J Med Chem. 2007;42(10):1309–1315. https://doi.org/10.1016/j.ejmech.2007.02.016
  • 14. Laasonen M, Wennberg T, Harmia-Pulkkinen T, Vuorela H. Simultaneous analysis of alkamides and caffeic acid derivatives for the identification of Echinacea purpurea, Echinacea angustifolia, Echinacea pallida and Parthenium integrifolium roots. Planta Med. 2002;68(6):572–574. https://doi.org/10.1055/s-2002-32561
  • 15. Perry NB, Burgess EJ, Glennie VA. Echinacea standardization: analytical methods for phenolic compounds and typical levels in medicinal species. J Agric Food Chem. 2001;49(4):1702–1706. https://doi.org/10.1021/jf001331y
  • 16. Karunanidhi A, Thomas R, Belkum A, Neela V. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. Biomed Res Int. 2013;2013:392058. https://doi.org/10.1155/2013/392058
  • 17. Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, et al. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 2009;83(2):186–190. https://doi.org/10.1016/j.antiviral.2009.05.002
  • 18. An RB, Sohn DH, Jeong GS, Kim YC. In vitro hepatoprotective compounds from Suaeda glauca. Arch Pharm Res. 2008;31:594–597. https://doi.org/10.1007/s12272-001-1198-1
  • 19. Ault JR. Coneflower: Echinacea species. In: Anderson NO, editor. Flower breeding and genetics. Dordrecht: Springer Netherlands; 2007. p. 801–824. https://doi.org/10.1007/978-1-4020-4428-1_30
  • 20. Mechanda SM, Baum BR, Johnson DA, Arnason JT. Analysis of diversity of natural populations and commercial lines of Echinacea using AFLP. Can J Bot. 2004;82(4):461– 484. https://doi.org/10.1139/B04-006
  • 21. Nilanthi D, Chen XL, Zhao FC, Yang YS, Wu H. Induction of tetraploids from petiole explants through colchicine treatments in Echinacea purpurea L. Biomed Res Int. 2009;2009:343485. https://doi.org/10.1155/2009/343485
  • 22. Chen X, Zhang J, Chen R, Li Q, Yang Y, Wu H. Comparison among diploid, its colchicine-induced tetraploid and their crossed descendent triploid in purple coneflower (Echinacea purpurea L.). In: Proceedings of the International Conference on Biological Engineering and Biomedical; 2014 Jan 12–14; Yichang, China. Lancaster, PA: Destech Publications, Inc.; 2014. p. 159–164.
  • 23. Li Q, Yang Y, Wu H. In vitro segregation of tetraploid and octoploid plantlets from colchicine-induced ploidy chimeras in Echinacea purpurea L. HortScience. 2016;51(5):549–557.
  • 24. Chen R, Jiang WZ, Li QL, Li XL, Chen XL, Yang YS, et al. Comparison of seven colchicine-induced tetraploids with their original diploids in purple coneflower (Echinacea purpurea L.). Euphytica. 2015;207(2):387–399. https://doi.org/10.1007/s10681-015-1556-3
  • 25. Xu CG, Tang TX, Chen R, Liang CH, Liu XY, Wu CL, et al. A comparative study of bioactive secondary metabolite production in diploid and tetraploid Echinacea purpurea (L.) Moench. Plant Cell Tissue Organ Cult. 2014;116(3):323–332. https://doi.org/10.1007/s11240-013-0406-z
  • 26. Wei F, Zhang GS. Meiotically asynapsis-induced aneuploidy in autopolyploid Arabidopsis thaliana. J Plant Res. 2010;123(1):87–95. https://doi.org/10.1007/s10265-009-0262-4
  • 27. Chapman MA, Abbott RJ. Introgression of fitness genes across a ploidy barrier. New Phytol. 2010;186(1):63–71. https://doi.org/10.1111/j.1469-8137.2009.03091.x
  • 28. Miyashita T, Hoshino Y. Interploid and intraploid hybridizations to produce polyploid Haskap (Lonicera caerulea var. emphyllocalyx) plants. Euphytica. 2015;201(1):15–27. https://doi.org/10.1007/s10681-014-1159-4
  • 29. Moraes AP, Chinaglia M, Palma-Silva C, Pinheiro F. Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae). Ecol Evol. 2013;3(11):3824–3837. https://doi.org/10.1002/ece3.752
  • 30. Abdolmohammadi M, Kermani MJ, Zakizadeh H, Hamidoghli Y. In vitro embryo germination and interploidy hybridization of rose (Rosa sp.). Euphytica. 2014;198(2):255–264. https://doi.org/10.1007/s10681-014-1098-0
  • 31. Li Q, Chen R, Chen X, Yang Y, Wu H. Estimation of the cloning potential in six selected genotypes of purple coneflower (Echinacea purpurea L.). Biotechnol Biotechnol Equip. 2013;27(4):3911–3917. https://doi.org/10.5504/bbeq.2013.0057
  • 32. Sejdler LK, Dabrowska J. Studies on the biology of flowering and fruiting of purple coneflower (Echinacea purpurea Moench). Pt. 1. Biology of flowering and fruiting. Herba Polonica. 1996;42:83–87.
  • 33. Stephens LC. Self-incompatibility in Echinacea purpurea. HortScience. 2008;43(5):1350– 1354.
  • 34. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • 35. Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52(2):201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
  • 36. Wang R, Gao J, Liang GH. Identification of primary trisomics and other aneuploids in foxtail millet. Plant Breed. 1999;118(1):59–62. https://doi.org/10.1046/j.1439-0523.1999.118001059.x
  • 37. Diao WP, Bao SY, Jiang B, Cui L, Chen JF. Primary trisomics obtained from autotriploid by diploid reciprocal crosses in cucumber. Sex Plant Reprod. 2009;22(1):45–51. https://doi.org/10.1007/s00497-008-0090-z
  • 38. Stoute AI, Varenko V, King GJ, Scott RJ, Kurup S. Parental genome imbalance in Brassica oleracea causes asymmetric triploid block. Plant J. 2012;71(3):503–516. https://doi.org/10.1111/j.1365-313X.2012.05015.x
  • 39. Zhang HY, Luo M, Johnson SD, Zhu XW, Liu L, Huang F, et al. Parental genome imbalance causes post-zygotic seed lethality and deregulates imprinting in rice. Rice. 2016;9:43. https://doi.org/10.1186/s12284-016-0115-4
  • 40. Tiwari S, Spielman M, Schulz R, Oakey RJ, Kelsey G, Salazar A, et al. Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana. BMC Plant Biol. 2010;10:70. https://doi.org/10.1186/1471-2229-10-72
  • 41. Chen XL, Zhang JJ, Chen R, Li QL, Yang YS, Wu H. An uncommon plant growth regulator, diethyl aminoethyl hexanoate, is highly effective in tissue cultures of the important medicinal plant purple coneflower (Echinacea purpurea L.). Biomed Res Int. 2013;2013:540316. https://doi.org/10.1155/2013/540316
  • 42. Jones MPA, Yi ZJ, Murch SJ, Saxena PK. Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep. 2007;26(1):13–19. https://doi.org/10.1007/s00299-006-0209-3
  • 43. Sahai A, Shahzad A. High frequency in vitro regeneration system for conservation of Coleus forskohlii: a threatened medicinal herb. Acta Physiol Plant. 2013;35(2):473–481. https://doi.org/10.1007/s11738-012-1090-z
  • 44. San B, Li ZG, Hu Q, Reighard GL, Luo H. Adventitious shoot regeneration from in vitro cultured leaf explants of peach rootstock Guardian is significantly enhanced by silver thiosulfate. Plant Cell Tissue Organ Cult. 2015;120(2):757–765. https://doi.org/10.1007/s11240-014-0645-7
  • 45. Abdoli M, Moieni A, Badi HN. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L.). Acta Physiol Plant. 2013;35(7):2075–2083. https://doi.org/10.1007/s11738-013-1242-9
  • 46. Azadeh M, Mahdi V, Soodabeh S. Echinacea purpurea: pharmacology, phytochemistry and analysis methods. Pharmacogn Rev. 2015;9(17):63–72. https://doi.org/10.4103/0973-7847.156353
  • 47. Erenler R, Telci I, Ulutas M, Demirtas I, Gul F, Elmastas M, et al. Chemical constituents, quantitative analysis and antioxidant activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) Nutt. J Food Biochem. 2015;39(5):622–630. https://doi.org/10.1111/jfbc.12168

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9801d47a-aba1-44b3-a7e6-fa1344b96717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.