PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 34 | 1 |

Tytuł artykułu

Zastosowanie metod biotechnologicznych w hodowli molekularnej rzepaku

Treść / Zawartość

Warianty tytułu

EN
The use of biotechnological methods in molecular breeding of oilseed rape

Języki publikacji

PL

Abstrakty

PL
W pracy przedstawiono przegląd literatury dotyczącej badań genetycznych ważnej uprawnej rośliny oleistej strefy klimatu umiarkowanego, jaką jest rzepak ozimy. Zaprezentowano metody biotechnologiczne, takie jak transformacje genetyczne z użyciem wektorów bakteryjnych oraz metodą wyciszania genów, ukierunkowana mutageneza, a także selekcja z użyciem markerów genetycznych, w odniesieniu do prowadzonych doświadczeń hodowlanych. Metody te stosowane są w celu modyfikacji i polepszenia ważnych gospodarczo cech, takich jak odporność na choroby i szkodniki, plon nasion, plon oleju, skład kwasów tłuszczowych w oleju nasion, występowanie związków aktywnych biologicznie w oleju i wytłoku oraz zawartość włókna w okrywie nasiennej. Podkreślono znaczenie identyfikacji specyficznych markerów genetycznych i ich zastosowania do selekcji w programach hodowli. Wskazano na rozwój nowej, interdyscyplinarnej dziedziny, określonej jako hodowla molekularna. Przedstawiono również praktyczne zastosowanie różnego rodzaju markerów genetycznych, identyfikujących geny i rejony genomu sprzężone z określonymi cechami, z włączeniem markerów opracowanych w IHAR – PIB, Oddział w Poznaniu.
EN
This paper comprises a review of genetic studies of winter oilseed rape, an important oil crop of the moderate climate zone. Biotechnological methods, such as genetic transformation with the use of bacterial vectors and gene silencing, site-directed mutagenesis as well as selection with the use of genetic markers with respect to field experiments were presented. The methods are applied for modification and improving of economically important traits, including resistance to diseases and pests, seed yield, seed oil fatty acid composition, the presence of biologically active compounds in oil and seed meal, and also the fibre content in seed coat. The importance of specific genetic markers development and their use for selection in breeding programs was highlighted. Molecular breeding was mentioned as a new, interdisciplinary domain. Finally, practical use of several genetic markers for identifying genes and genome regions linked to specific traits, including those developed at the Plant Breeding and Acclimatization Institute – NRI, Poznan Branch, was presented.

Wydawca

-

Rocznik

Tom

34

Numer

1

Opis fizyczny

s.7-25,bibliogr.

Twórcy

  • Wydział Biologii, Uniwersytet im.Adama Mickiewicza w Poznaniu
  • Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy, Oddział w Poznaniu

Bibliografia

  • Amar S., Ecke W., Becker H.C., Möllers C. 2008. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor. Appl. Genet., 116: 1051-1061.
  • Badani A.G., Snowdon R.J., Wittkop B., Lipsa F.D., Baetzel R., Horn R., De Haro A., Font R., Lühs W., Friedt W. 2006. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 49: 1499-1509.
  • Bannerot T., Boulidard L., Cauderon Y., Tempe J. 1974. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Proc. Eucarpia Meeting on Cruciferae, Dundee, UK, 52-54.
  • Belide S., Petrie J.R., Shrestha P., Singh S.P. 2012. Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Frontiers in Plant Science, 3: 168.
  • Bonhomme S., Budar F., Lancelin D., Small I., Defrance M.C., Pelletier G. 1992. Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol. Gen. Genet., 235: 340-348.
  • Brown G.G. 1999. Unique aspects of cytoplasmic male sterility and fertility restoration in Brassica napus. Heredity, 90: 351-356.
  • Brown G.G., Formanova N., Jin H., Wargachuk R., Dendy C., Patil P., Laforest M., Zhang J., Cheung W.Y., Landry B.S. 2003. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. The Plant Journal, 35: 262-272.
  • Chen G., Geng J., Rahman M., Liu X., Tu J., Fu T., Li G., McVetty P.B.E., Tahir M. 2010. Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica, 175: 161-174.
  • Collard B.C.Y., Jahufer M.Z.Z., Brouwer J.B., Pang E.C.K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica, 142: 169-196.
  • Collard B., Mackill D. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc. B., 363: 557-572.
  • Delourme R., Bouchereau A., Hubert N., Renard M., Landry B.S. 1994. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.), Theor. Appl. Genet., 88: 741-748.
  • Diers B.W., McVetty P.B.E., Osborn T.C. 1996. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Sci., 36: 79-83.
  • Duke S.O. 2005. Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag. Sci., 61: 211-218.
  • Fan C., Cai G., Qin J., Li Q., Yang M., Wu J., Fu T., Liu K., Zhou Y. 2010. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor. Appl. Genet., 121: 1289-1301.
  • Fengqun Y., Gugel R.K., Kutcher H.R., Peng G., Rimmer S.R. 2013. Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus x B. rapa subsp. sylvestris. Theor. Appl. Genet., 126: 307-315.
  • Ferreira M.E., Williams P.H., Osborn T.C. 1994. RFLP mapping of Brassica napus using doubled haploid lines. Theor. Appl. Genet., 89: 615-621.
  • Ferreira M.E., Rimmer S.R., Williams P.H., Osborn T.C. 1995a. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phyto-pathology, 85: 213-217.
  • Ferreira M.E., Williams P.H., Osborn T.C. 1995b. Mapping of a locus controlling resistance to Albugo candida in Brassica napus using molecular markers. Phytopathology, 85: 218-222.
  • Ferreira M.E., Satagopan J., Yandell B.S., Williams P.H., Osborn T.C. 1995c. Mapping loci controlling vernalization requirement and flowering time in Brassica napus, Theor. Appl. Genet., 90: 727-732.
  • Formanová N., Stollar R., Geddy R., Mahé L., Laforest M., Landry B.S., Brown G.G. 2010. High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-derived molecular markers. Theor. Appl. Genet., 120: 843-851.
  • Geritz S., Meijdenb E., Metz J. 1999. Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol., 55: 1324-1343.
  • Hasan M., Friedt W., Pons-Kűhnemann J., Freitag N.M., Link K., Snowdon R. 2008. Association of gene-linked SSR markers to seed glucosinolates content in oilseed rape (Brassica napus ssp. napus). Theor. Appl. Genet., 116: 1035-1049.
  • Hansen G., Wright M.S. 1999. Recent advances in the transformation of plants. Trends Plant Sci., 4: 226-231.
  • Hospital F., Charcosset A. 1997. Marker-assisted introgression of quantitative trait loci. Genetics, 147: 1469-1485.
  • http://www.brassica.info/resource/maps/lg-assignments.php.
  • Hu X., Sullivan-Gilbert M., Gupta M., Thompson S.A. 2006. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor. Appl. Genet., 113: 497-507.
  • Hutchison C.A., Phillips S., Edgell M.H., Gillam S., Jahnke P., Smith M. 1978. Mutagenesis at a specific position in a DNA sequence. J. Biol. Chem., 253: 6551-6560.
  • Hüsken A., Baumert A., Starck D., Becker H.C., Möllers C., Milkowski C. 2005. Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based supression of BnSGT1 gene expression. Molecular Breeding, 16: 127-138.
  • Jourden C., Barret P., Horvais R., Foisset N., Delourme R., Renard M. 1996a. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Molecular Breeding, 2: 61-71.
  • Jourden C., Barret P., Horvais R., Delourme R., Renard M. 1996b. Identification of RAPD marker linked to linolenic acid genes in rapeseed. Euphytica, 90: 351-357.
  • Katavic V., Mietkiewska E., Barton D.L., Giblin E.M., Reed D.W., Taylor D.C. 2002. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur. J. Biochem., 269: 5625-5631.
  • Lee L.K., Roth C.M. 2003. Antisense technology in molecular and cellular bioengineering. Current Opinion in Biotechnology, 14: 505-511.
  • Liu L., Stein A., Wittkop B., Sarvari P., Li J., Yan X., Dreyer F., Frauen M., Friedt W., Snowdon R.J. 2012. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor. Appl. Genet., 124: 1573-1586.
  • Marwede V., Gül M.K., Becker H.C., Ecke W. 2005. Mapping of QTL controlling tocopherol content in winter oilseed rape (Brassica napus L.). Plant Breeding, 124: 20-26.
  • Mikołajczyk K., Bartkowiak-Broda I., Popławska W., Spasibionek S., Dobrzycka A., Dabert M. 2012. A multiplex fluorescent PCR assay in molecular breeding of oilseed rape. In Tech. Plant Breeding, 185-200.
  • Mikołajczyk K., Dobrzycka A., Podkowiński J., Popławska W., Spasibionek S., Barkowiak-Broda I. 2010a. A multiplex PCR assay for identification of the ogura male sterile cytoplasm and the Rfo restorer gene among oilseed rape breeding forms. Rośliny Oleiste – Oilseed Crops, 31: 201-210.
  • Mikołajczyk K., Dabert M., Karłowski W.M., Spasibionek S., Nowakowska J., Cegielska-Taras T., Bartkowiak-Broda I. 2010b. Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breeding, 129: 502-507.
  • Mikołajczyk K., Dabert M., Nowakowska J., Podkowiński J., Popławska W., Bartkowiak-Broda I. 2008. Conversion of the RAPD OPC021150 marker of the Rfo restorer gene into a SCAR marker for rapid selection of oilseed rape. Plant Breeding, 127: 647-649.
  • Mikołajczyk K., Matuszczak M., Piętka T., Bartkowiak-Broda I., Krzymański J. 1998. Zastosowanie markerów DNA do badań odmian składników mieszańcowych rzepaku. Rośliny Oleiste – Oilseed Crops, 19: 463-470.
  • Murai N. 2013. Review: Plant Binary Vectors of Ti Plasmid in Agrobacterium tumefaciens with a Broad Host-Range Replicon of pRK2, pRi, pSa or pVS1. American Journal of Plant Sciences, 4: 932-939.
  • Naczk M., Amarowicz R., Sullivan A., Shahidi F. 1998. Current research developments on poly-phenolics of rapeseed/canola a review. Food Chemistry, 62: 489-502.
  • Ogura H. 1968. Studies on the new male-sterility in japanese radish with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agric. Kagoshima Univ., 6: 39-78.
  • Osborn T.C., Kole C., Parkin I.A., Sharpe A.G., Kuiper M., Lydiate D.J., Trick M. 1997. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 146: 1123-1129.
  • Pelletier G., Primard C., Vedel F., Chetrit P., Remy R., Rousselle P., Renard M. 1983. Intergeneric cytoplasmic hybridization in cruciferae by protoplast fusion. Molecular and General Genetics, 191: 244-250.
  • Pilet M.L., Delourme R., Foisset N., Renard M. 1998. Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor. Appl. Genet., 97: 398-406.
  • Raclaru M., Gruber J., Kumar R., Sadre R., Lühs W., Zarhloul K.M., Friedt W., Frentzen M., Weier D. 2006. Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Molecular Breeding, 18: 93-107.
  • Raman H., Raman R., Eckermann P., Coombes N., Manoli S., Zou X., Edwards D., Meng J., Prangnell R., Stiller J., Batley J., Luckett D., Wratten N., Dennis E. 2013. Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor. Appl. Genet., 126: 119-132.
  • Raman R., Taylor B., Marcroft S., Stiller J., Eckermann P., Coombes N., Rehman A., Lindbeck K., Luckett D., Wratten N., Batley J., Edwards D., Wang X., Raman H. 2012. Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor. Appl. Genet., 125: 405-418.
  • Rezaeizad A., Wittkop B., Snowdon R., Hasan M., Mohammadi V., Zali A., Friedt W. 2011. Identification of QTLs for phenolic compounds in oilseed rape (Brassica napus L.) by association mapping using SSR markers. Euphytica, 177: 335-342.
  • Romagosa I., Han F., Ullrich S.E., Hayes P.M., Wesenberg D.M. 1999. Verification of yield QTL through realized molecular marker-assisted selection responses in a barley cross. Molecular Breeding, 5: 143-152.
  • Rosa E.A.S., Heaney R.K., Fenwick G.R., Portas C.A.M. 1997. Glucosinolates in crop plants. Horticultural Reviews, 19: 99-215.
  • Sarkar G., Sommer S.S. 1990. The „megaprimer” method of site-directed mutagenesis, Biotech-niques, 8: 404-407.
  • Sayyed A.H., Schuler T.H., Wright D.J. 2003. Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella. Pest Manag. Sci., 59: 1197-1202.
  • Schnable S.P., Wise R.P. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 3: 175-180.
  • Shaner D.L. 2000. The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag. Sci., 56: 320-326.
  • Shi J.Q., Li R.Y., Qiu D., Jiang C.C., Long Y., Morgan C., Bancroft I., Zhao J.Y., Meng J.L. 2009. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 182: 851-861.
  • Sigareva M.A., Earle E.D. 1997. Direct transfer of a cold-tolerant Ogura male-sterile cytoplasm into cabbage (Brassica oleracea spp. capitata) via protoplast fusion. Theor. Appl. Genet., 94: 213-220.
  • Song K., Osborn T.C. 1992. Polyphyletic origins of Brassica napus: New evidence based on organelle and nuclear RFLP analyses. Genome, 35: 992-1001.
  • Spasibionek S. 2006. New mutants of winter rapeseed (Brassica napus L.) with changed fatty acid composition. Plant Breeding, 125: 259-267.
  • Töpfer R., Martini N., Schell J. 1995. Modification of plant lipid synthesis. Science, 268: 681-686.
  • Trautwein E.A., Erbersdobler H.F. 1998. Rapsoel-ein wertvolles Speiseoel. UFOP-Schriften, Heft 6. Bonn: Union zur Foerderung von Oel- und Proteinpflanzen.
  • Trendelkamp H., Uzunova M.I., Ecke W. 1999. Mapping restorer gene for CMS tour 25-143 cytoplasm in rapeseed (Brassica napus L.). Proceedings of the 10th International Rapeseed Congress.
  • Uzunova M., Ecke W., Weissleder K., Röbbelen G. 1995. Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed gluco-sinolate content. Theor. Appl. Genet., 90: 194-204.
  • Walden R., Wingender R. 1995. Gene transfer and plant regeneration techniques. Trends Biotech., 13: 324-331.
  • Wang J., Chen Z., Du J., Sun Y., Liang A. 2005. Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep., 24: 549-555.
  • Wittkop B., Snowdon R., Friedt W. 2009. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica, 170: 131-140.
  • Yang P., Shu C., Chen L., Xu J., Wu J., Liu K. 2012. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor. Appl. Genet., 125: 285-296.
  • Yang Q., Fan C., Guo Z., Qin J., Wu J., Li Q., Fu T., Zhou Y. 2012. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor. Appl. Genet., 125: 715-729.
  • Yu F., Gugel R.K., Kutcher H.R., Peng G., Rimmer S.R. 2012. Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris. Theor. Appl. Genet., 126: 307-315.
  • Xiao S.S., Xu J.S., Li Y., Zhang L., Shi S.J., Wu J.S., Liu K.D. 2007. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 50: 611-618.
  • Zhang L., Li S., Chen L., Yang G. 2012. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor. Appl. Genet., 125: 695-705.
  • Zhao J., Huang J., Chen F., Xu F., Ni X., Xu H., Wang Y., Jiang C., Wang H., Xu A., Huang R., Li D., Meng J. 2012. Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor. Appl. Genet., 124: 407-421.
  • Zhao J.W., Meng J.L. 2003. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor. Appl. Genet., 106: 759-764.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-97fcee2a-e72b-4a67-87eb-592b95485bd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.