Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 2 |
Tytuł artykułu

Status epilepticus evokes prolonged increase in the expression of CCL3 and CCL4 mRNA and protein in the rat brain

Treść / Zawartość
Warianty tytułu
Języki publikacji
CCL3 and CCL4 are proinflammatory chemokines belonging to the CC family. Increase in expression of mRNA coding for various chemokines including CCL3 and CCL4 has been often detected with global transcriptome profiling of brain tissue following epileptogenic stimuli as well as in epilepsy in experimental models and in human patients. Despite this, little is known about the expression of these proteins in epileptogenesis or epilepsy. In the present work CCL3 and CCL4 mRNA and protein expression were studied in the amygdala stimulation model of temporal lobe epilepsy using quantitative PCR and immunohistochemistry. Expression of CCL3 and CCL4 mRNA in the block of tissue containing enthorinal and piriform cortices, amygdala and piriform nucleus was markedly up-regulated at 1, 4, 14 and 30 days following stimulation and in hippocampal CA1 was significantly increased at 1 and 4 days following stimulation. Expression of CCL3 and CCL4 proteins was elevated in astrocytes in the enthorinal and piriform cortices, amygdala, and hippocampus showing the largest increase at 4D after status epilepticus. Increase in mRNA and protein levels of CCL3 and CCL4 in the animal model of temporal lobe epilepsy suggests their role in disease development or recovery form epileptogenic insult. Existence of multiple targets for these chemokines in the damaged brain allows several possibilities of influencing neuronal and glial functions.
Słowa kluczowe
Opis fizyczny
  • The Nencki Institute of Experimental Biology, Warsaw, Poland
  • The Nencki Institute of Experimental Biology, Warsaw, Poland
  • The Nencki Institute of Experimental Biology, Warsaw, Poland
  • The Nencki Institute of Experimental Biology, Warsaw, Poland
  • Babcock AA, Kuziel WA, Rivest S, Owens T (2003) Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23: 7922­7930.
  • Bacon KB, Harrison JK (2000) Chemokines and their recep­tors in neurobiology: perspectives in physiology and homeostasis. J Neuroimmunol 104: 92-97.
  • Biber K, Vinet J, Boddeke HW (2008) Neuron-microglia signaling: chemokines as versatile messengers. J Neuroimmunol 198: 69-74.
  • Bona E, Andersson AL, Blomgren K, Gilland E, Puka- Sundvall M, Gustafson K, Hagberg H (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45: 500-509.
  • Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A, Kaufer D (2009)
  • Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci 29: 8927­8935.
  • Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive fac­tors produced by CD8+ T cells. Science 270: 1811­1815.
  • Coughlan CM, McManus CM, Sharron M, Gao Z, Murphy D, Jaffer S, Choe W, Chen W, Hesselgesser J, Gaylord H, Kalyuzhny A, Lee VM, Wolf B, Doms RW, Kolson DL (2000) Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience 97: 591-600.
  • Cowell RM, Xu H, Galasso JM, Silverstein FS (2002) Hypoxic-ischemic injury induces macrophage inflamma­tory protein-1alpha expression in immature rat brain. Stroke 33: 795-801.
  • Cowell RM, Xu H, Parent JM, Silverstein FS (2006) Microglial expression of chemokine receptor CCR5 dur­ing rat forebrain development and after perinatal hypox- ia-ischemia. J Neuroimmunol 173: 155-165.
  • Foresti ML, Arisi GM, Katki K, Montanez A, Sanchez RM, Shapiro LA (2009) Chemokine CCL2 and its receptor CCR2 are increased in the hippocampus following pilo- carpine-induced status epilepticus. J Neuroinflammation 6: 40.
  • Galasso JM, Harrison JK, Silverstein FS (1998) Excitotoxic brain injury stimulates expression of the chemokine receptor CCR5 in neonatal rats. Am J Pathol 153: 1631­1640.
  • Gamo K, Kiryu-Seo S, Konishi H, Aoki S, Matsushima K, Wada K, Kiyama H (2008) G-protein-coupled receptor screen reveals a role for chemokine receptor CCR5 in suppressing microglial neurotoxicity. J Neurosci 28: 11980-11988.
  • Ghirnikar RS, Lee YL, He TR, Eng LF (1996) Chemokine expression in rat stab wound brain injury. J Neurosci Res 46: 727-733.
  • Gorter JA, van Vliet EA, Aronica E, Breit T, Rauwerda H, Lopes da Silva FH, Wadman WJ (2006) Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci 26: 11083-11110.
  • Guyon A, Massa F, Rovere C, Nahon JL (2008) How cytok- ines can influence the brain: a role for chemokines? J Neuroimmunol 198: 46-55.
  • Halks-Miller M, Schroeder ML, Haroutunian V, Moenning U, Rossi M, Achim C, Purohit D, Mahmoudi M, Horuk R (2003) CCR1 is an early and specific marker of Alzheimer's disease. Ann Neurol 54: 638-646.
  • Israelsson C, Wang Y, Kylberg A, Pick CG, Hoffer B, Ebendal T (2009) Closed head injury in a mouse model results in molecular changes indicating inflammatory responses. J Neurotrauma 26: 1307-1314.
  • Jiang L, Newman M, Saporta S, Chen N, Sanberg C, Sanberg PR, Willing AE (2008) MIP-1alpha and MCP-1 induce migration of human umbilical cord blood cells in models of stroke. Curr Neurovasc Res 5: 118-124.
  • Kobori N, Clifton GL, Dash P (2002) Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain Res Mol Brain Res 104: 148-158.
  • Lee TS, Mane S, Eid T, Zhao H, Lin A, Guan Z, Kim JH, Schweitzer J, King-Stevens D, Weber P, Spencer SS, Spencer DD, de Lanerolle NC (2007) Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med 13: 1-13.
  • Li HH, Lee SM, Cai Y, Sutton RL, Hovda DA (2004) Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries. J Neurotrauma 21: 1141­1153.
  • Lukasiuk K, Dabrowski M, Adach A, Pitkanen A (2006) Epileptogenesis-related genes revisited. Prog Brain Res 158: 223-241.
  • Matzilevich DA, Rall JM, Moore AN, Grill RJ, Dash PK (2002) High-density microarray analysis of hippocampal gene expression following experimental brain injury. J Neurosci Res 67: 646-663.
  • McManus CM, Weidenheim K, Woodman SE, Nunez J, Hesselgesser J, Nath A, Berman JW (2000) Chemokine and chemokine-receptor expression in human glial ele­ments: induction by the HIV protein, Tat, and chemokine autoregulation. Am J Pathol 156: 1441-1453.
  • Melik-Parsadaniantz S and Rostene W (2008) Chemokines and neuromodulation. J Neuroimmunol 198: 62-68.
  • Mennicken F, Chabot J G, Quirion R (2002) Systemic administration of kainic acid in adult rat stimulates expression of the chemokine receptor CCR5 in the fore- brain. Glia 37: 124-138.
  • Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neu­ronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95: 14500-14505.
  • Miller RJ, Rostene W, Apartis E, Banisadr G, Biber K, Milligan ED, White FA, Zhang J (2008) Chemokine action in the nervous system. J Neurosci 28: 11792­11795.
  • Murphy PM (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54: 227-229.
  • Nissinen J, Halonen T, Koivisto E, Pitkanen A (2000) A new model of chronic temporal lobe epilepsy induced by elec­trical stimulation of the amygdala in rat. Epilepsy Res 38: 177-205.
  • Otto VI, Stahel PF, Rancan M, Kariya K, Shohami E, Yatsiv I, Eugster HP, Kossmann T, Trentz O, Morganti-Kossmann MC (2001) Regulation of chemokines and chemokine receptors after experimental closed head injury. Neuroreport 12: 2059-2064.
  • Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates, 6th Edition. Elsevier, Amsterdam.
  • Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ (2003) Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 71: 208-219.
  • Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18: 217-242.
  • Rostene W, Kitabgi P, Parsadaniantz SM (2007) Chemokines: a new class of neuromodulator? Nat Rev Neurosci 8: 895-903.
  • Semple BD, Kossmann T, Morganti-Kossmann MC (2009) Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab 30: 459-473.
  • Spleiss O, Gourmala N, Boddeke HW, Sauter A, Fiebich BL, Berger M, Gebicke-Haerter PJ (1998) Cloning of rat HIV- 1-chemokine coreceptor CKR5 from microglia and upregulation of its mRNA in ischemic and endotoxinemic rat brain. J Neurosci Res 53: 16-28.
  • Stefini R, Catenacci E, Piva S, Sozzani S, Valerio A, Bergomi R, Cenzato M, Mortini P, Latronico N (2008) Chemokine detection in the cerebral tissue of patients with posttraumatic brain contusions. J Neurosurg 108: 958-962.
  • Takami S, Minami M, Nagata I, Namura S, Satoh M (2001) Chemokine receptor antagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21: 1430-1435.
  • Takami S, Nishikawa H, Minami M, Nishiyori A, Sato M, Akaike A, Satoh M (1997) Induction of macrophage inflammatory protein MIP-1alpha mRNA on glial cells after focal cerebral ischemia in the rat. Neurosci Lett 227: 173-176.
  • Tang Y, Lu A, Aronow BJ, Wagner KR, Sharp FR (2002) Genomic responses of the brain to ischemic stroke,
  • intracerebral haemorrhage, kainate seizures, hypoglyce­mia, and hypoxia. Eur J Neurosci 15: 1937-1952.
  • Torres-Munoz JE, Van Waveren C, Keegan MG, Bookman RJ, Petito CK (2004) Gene expression profiles in micro- dissected neurons from human hippocampal subregions. Brain Res Mol Brain Res 127: 105-114.
  • Trebst C, Staugaitis SM, Tucky B, Wei T, Suzuki K, Aldape KD, Pardo CA, Troncoso J, Lassmann H, Ransohoff RM (2003) Chemokine receptors on infiltrating leucocytes in inflammatory pathologies of the central nervous system (CNS). Neuropathol Appl Neurobiol 29: 584-595.
  • Vallat AV, De Girolami U, He J, Mhashilkar A, Marasco W, Shi B, Gray F, Bell J, Keohane C, Smith TW, Gabuzda D (1998) Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDS. Am J Pathol 152: 167-178.
  • van der Meer P, Ulrich AM, Gonzalez-Scarano F, Lavi E (2000) Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mecha­nisms for HIV dementia. Exp Mol Pathol 69: 192-201.
  • van Gassen KL, de Wit M, Koerkamp MJ, Rensen MG, van Rijen PC, Holstege FC, Lindhout D, de Graan PN (2008) Possible role of the innate immunity in temporal lobe epilepsy. Epilepsia 49: 1055-1065.
  • Wu Y, Wang X, Mo X, Xi Z, Xiao F, Li J, Zhu X, Luan G, Wang Y, Li Y, Zhang J (2008) Expression of monocyte chemoattractant protein-1 in brain tissue of patients with intractable epilepsy. Clin Neuropathol 27: 55-63.
  • Xia MQ, Hyman BT (1999) Chemokines/chemokine recep­tors in the central nervous system and Alzheimer's dis­ease. J Neurovirol 5: 32-41.
  • Xu JH, Long L, Tang YC, Zhang JT, Hut HT, Tang FR (2009) CCR3, CCR2A and macrophage inflammatory protein (MIP)-1a, monocyte chemotactic protein-1 (MCP-1) in the mouse hippocampus during and after pilocarpine-induced status epilepticus (PISE). Neuropathol Appl Neurobiol 35: 496-514.
  • Zlotnik A, Yoshie O (2000) Chemokines: a new classifica­tion system and their role in immunity. Immunity 12: 121-127.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.