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Summary The influence of the local sea surface temperature (SST) and remote ENSO (El Niño- 
Southern Oscillation) indices on the wind speed (WS) data were explored for the Indian Ocean 
region. Relationships among the parameters were studied using spatial correlation plots and 
significant correlation ranges. Two months (July and January) representing opposite monsoon 
phases were selected for analysis for the period 1950—2016. There was a significant negative 
correlation between WS and SST over the Bay of Bengal (BOB) during July. Although different 
ENSO indices correlated differently in different areas of the Indian Ocean, the region off the 
coast of Sri Lanka was most significantly teleconnected. The southwest monsoon locally im- 
pacted the WS and SST relationship and the WS parameter was remotely teleconnected in both 
the monsoon seasons. Further empirical orthogonal function (EOF) analysis was applied on the 
67 years WS data of the BOB region to extract the dominant mode representing maximum vari- 
ability of the total variance. The temporal pattern of the first principal component (PC1) of WS 
data was linked to the North Atlantic Oscillations in January and the Atlantic Multidecadal Os- 
cillation in July respectively. The continuous wavelet power spectra of the PC1 of WS showed 
significant regions in the 2—4-year band resembling the ENSO variability. Wavelet coherence 
applied between PC1 of WS and the ENSO indices showed greatest values for January in the 8—
16-year band and for July in the 0—4-year band. A close relationship was established between 
the WS variability in BOB and the ENSO indices. 
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. Introduction 

everal studies reveal the impact of the Indian Ocean in 
haping the climate on both regional and, global scales 
 Dong and McPhaden, 2018 ; Kug and Kang, 2006 ; Okomura
nd Deser, 2010 ). There are modes of climate variability,
anging from intraseasonal to interannual and, also longer 
ime scales. The ENSO is the most significant interannual 
ode of tropical coupled ocean-atmosphere phenomenon 

 McPhaden, 2002 ). The inverse relationship between Indian 
ummer monsoon rainfall and, ENSO ( Kumar et al., 1999 )
as modulated on decadal timescales and, its changes 
ere linked to Atlantic Multidecadal Oscillation ( Chen 
t al., 2010 ), aerosol impacts ( Azad and Rajeevan, 2016 )
nd, zonal shifts in ENSO’s center from eastern Pacific to
entral Pacific ( Fan et al., 2017 ). The summer variability
ver the Indo-Northwest Pacific region was studied ( Xie 
t al., 2016 ) in reference to the occurrence of a large-scale
nomalous anticyclone in post-El Niño summers over the 
ropical Northwest Pacific and North Indian oceans. Li et al.
2017) discussed various theories relating to the formation, 
evelopment, and maintenance of the western North Pa- 
ific anomalous anticyclone that transfers El Niño’s impact 
n East Asian climate. Sun and Wang, (2019) revealed a 
onnection between the summer climate of the Three- 
iver-Source region of China and the global climate system 

n terms of North Atlantic Oscillation, western Indian Ocean 
ea surface temperature, El Niño-Southern Oscillation, and 
he East Asian summer monsoon. During an El Niño event,
here were positive SST anomalies over the Indian Ocean 
rom 3 to 6 months after SST anomalies peak in the tropical
acific ( Klein et al., 1999 ). The interannual Indian Ocean
ST variations were positively correlated with the eastern 
quatorial Pacific Ocean SST anomalies with a lag of about
 months ( Venzke et al., 2000 ). Li et al. (2001) analyzed
hat although the eastern Pacific SST affects the monsoon 
n the ENSO time scale (2—7 year), the Indian monsoon 
ainfall had significant positive correlations with the Indian 
cean SST on the tropical biennial oscillation time scale 
2—3 year). The warming in the Indian Ocean produced 
n easterly wind stress anomaly over Indonesia and, the 
estern Pacific during the mature phase of El Niño ( Kug
nd Kang, 2006 ). The easterly wind stress anomaly over 
he western Pacific, as mentioned above, lead to the rapid
ermination of El Niño and a fast transition to La Niña
y generating upwelling Kelvin waves. The Indian Ocean 
arming which was effective for relatively strong El Niños 
esulted in La Niña one year after the mature phase of El
iño ( Kug and Kang, 2006 ). A review was performed based
n the climatic importance of Indian Ocean SST and the role
f ocean dynamics in their generation ( Schott et al., 2009 ).
 possible role of the Indian Ocean was identified in the
symmetric evolution of surface wind anomalies over the 
estern Pacific ( Okomura and Deser, 2010 ). The relation-
hip between sea surface temperature anomaly (SSTA) and, 
ind energy input in the Pacific Ocean was studied from
949 to 2003 ( Huang and Qiao, 2009 ). They showed a strong
egative correlation between SSTA and, local wind energy 
nput to surface waves in most of the domains at low and
iddle latitudes. Huang and Qiao (2009) also indicated wind 
nergy input may play an important role in the interannual
nd decadal variability of the wind parameter in the Pacific 
cean by regulating vertical mixing processes in the upper
cean. The varied wind energy input over the past decades
ay lead to varied mixing in the upper ocean which may
ffect the SST and, then the global climate system. The
ole of the Indian Ocean was observed in initiating El Niño
vents, their development and fading away ( Annamalai 
t al., 2005 ). Dong and McPhaden (2018) suggested warm
STs in the Indian Ocean in 2014 weakened westerly wind
nomalies in the Pacific which suppressed the development 
f the El Niño in 2014. Goswami et al. (2006) identified
arm (cold) phases of the Atlantic Multidecadal Oscillation 
AMO) producing increased (decreased) Indian summer 
onsoon rainfall and negative (positive) North Atlantic 
scillation (NAO) events resulting in below (above) normal 
onsoon rainfall. Through the NAO they established a 
undamental link between the North Atlantic and the Indian
ummer monsoon. Thus the Indian Ocean is connected with
he different climatic oscillations around the world. 
In this study, the variability of the wind speed parameter

n the BOB region was explored for possible teleconnection
atterns across the globe. Several statistical tools like 
mpirical orthogonal function analysis, wavelet analysis, 
avelet coherence, significant correlation ranges have 
een used and are discussed in methodology. The wind
peed is a major parameter for monitoring and predicting
xtreme weather patterns. It affects the development of 
urface waves and storm surges. In this paper, the impact
f local SST and remote ENSO indices on the wind speed
arameter in the Indian Ocean region was discussed. A
onnection was explored linking the relationship between 
S variability and the ENSO indices in the BOB region. 

. Data and methodology 

CEP/NCAR reanalysis monthly mean surface (0.995 sigma 
evel) WS data were available at 2.5-degree latitude by
.5-degree longitude global grid. WS data were extracted 
or July and January for the Indian Ocean region covering
he area from 30 °E to 120 °E and 30 °N—70 °S for the period
950—2016. NOAA Extended Reconstructed Sea Surface 
emperature V4 data were available at 2.0-degree latitude 
y a 2.0-degree longitude global grid. SST data were ex-
racted for the above region for the same period. WS and
ST data were interpolated to 1.0-degree by 1.0-degree 
patial resolution for uniformity in dimension required 
uring the statistical analysis. 
For the present work the month of July, representing the

outhwest monsoon and the month of January, representing 
he northeast monsoon, have been analyzed for particular 
ears of the period 1950—2016 and classified as normal or
l Niño or La Niña months following the Oceanic Nino Index
ONI) standard. The ONI is a three month average of SST
nomalies in the Niño 3.4 region (5 °N—5 °S, 120 °—170 °W),
ased on 30-year base periods updated every 5 years. The
xtended reconstructed sea surface temperature, version 
 (ERSSTv5) has been updated and improved ( Huang et al.,
017 ) and used for the ONI calculation. Average SST for
he Niño 3.4 region was calculated for each month, and
urther averaged using values from previous and following 
onths. This three-month average was compared with the 
0-year average and the difference was the ONI value for
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the three-month considered. NOAA uses ONI as the primary
index for identifying El Niño (warm) and La Niña (cool)
events in the tropical Pacific. When the index is 0.5 °C
or higher, El Niño conditions exist and when the index is
−0.5 °C or lower, La Niña conditions exist. 

Three ENSO indices namely, Southern Oscillation Index
(SOI), Multivariate ENSO Index (MEI) and NINO3.4 have
been correlated with WS in the present study. Monthly
data for the above three indices were accessed from
http://www.esrl.noaa.gov/psd/data/climateindices/ . The
SOI index is the difference between the atmospheric pres-
sure at sea level at Tahiti and Darwin. Prolonged periods
of negative (positive) SOI values coincide with El Niño (La
Niña) episodes. SST anomalies equal to or greater than
±0.5 °C in the Niño 3 region (5 °N—5 °S,150 °W—90 °W) are
indicative of ENSO warm (cold) phase conditions. The Multi-
variate ENSO Index (MEI) is based on the six main observed
variables over the tropical Pacific. These six variables are
sea-level pressure, zonal and meridional components of
the surface wind, sea surface temperature, surface air
temperature, and total cloudiness fraction of the sky. The
MEI integrates more information than SST based indices and
thus is more comprehensive. 

Spatial correlation plots were generated depicting re-
gions statistically significant for WS, SST and ENSO indices.
To identify the significant correlation ranges probability or
p-values were calculated at the 0.05 significance level. If
the p-value is less than 0.05 then the Pearson correlation co-
efficient is considered statistically significant ( Fisher, 1992 ).

The NAO index is based on the surface sea-level pressure
difference between the subtropical high and the subpolar
low. The polar pressure is taken near Iceland and the sub-
tropical pressure is taken near the Azores. The first mode
of rotated EOF analysis of monthly mean 500 millibar height
anomaly data from 1950 to 2000 over 0—90 °N latitude is
considered as the NAO pattern ( Barnston and Livezey, 1987 ).
The AMO is a 65—80-year cycle of North Atlantic sea surface
temperatures for 1856—1999 ( Kerr, 2000 ). AMO warm phases
occurred during 1860—1880 and 1940—1960, and cool phases
during 1905—1925 and 1970—1990 ( Enfield et al., 2001 ).
The NAO index for January and AMO index for July for the
period 1950—2016 have been compared with the PC1 of WS.

In the first experiment, spatial correlation plots were
generated between WS and SST data for all the 67 years to
analyze the local impact. To explore how WS is influenced
by remote ENSO indices (SOI, MEI, NINO3.4) respective
spatial correlation plots were generated. Instead of all
the 67 years together next particular years representing
normal, El Niño and La Niña phases were taken into account
for analysis. The above experiments were repeated and
correlation plots generated for the particular phases. 

Empirical orthogonal function (EOF) analysis is a power-
ful tool for data compression and dimensionality reduction.
The EOF technique decomposes the space-time distributed
data into spatial modes ranked by their temporal variances.
Since EOFs have been introduced in atmospheric science
by Lorenz (1956) , it has become a statistical tool of funda-
mental importance in the atmosphere, ocean, and climate
science for exploratory data analysis and dynamical mode
reduction. Spectral analysis is a tool for extracting embed-
ded structures in a time series. In particular, Fourier analysis
has been used extensively by researchers for extracting
deterministic structures from time series but is incapable
of detecting non-stationary features often present in geo-
physical time series. Wavelet analysis can extract transient
features embedded in time series, with a wavelet power
spectrum representing variance (power) of a time series as
a function of time and period. Since the work of Torrence
and Compo (1998) , wavelet analysis has been applied exten-
sively to geophysical time series such as the indices for the
North Atlantic Oscillation ( Olsen et al., 2012 ) and Arctic Os-
cillation ( Jevrejeva et al., 2003 ). The application of wavelet
coherence and cross-wavelet analyses ( Grinsted et al.,
2004 ), moreover, has proven useful in relating geophysical
time series to other time series ( Jevrejeva et al., 2003 ). 

Considering July and January representing the southwest
and northeast monsoon periods, EOF analysis is applied on
WS data for the BOB region (78 °E to 98 °E and 25 °N to 5 °N)
for the analyzed period. The time series of the first principal
components were linked to the NAO and AMO to establish
a relationship between the WS variability and the ENSO in-
dices. The localized intermittent periodicities can be identi-
fied on the time series data using continuous wavelet trans-
forms, that expands a time series into a time-frequency
space. The periodicity of the first principal components
(PC1) of WS data was assessed using the wavelet method.
Continuous wavelet power spectra were generated for
analysis. Finally, wavelet coherence was applied to PC1 of
WS and the ENSO indices to examine possible relationships
between them. Coherence plots were generated between
the two time series in both the time and frequency domain.

3. Results and discussions 

3.1. Relationship between WS data, SST data and 

ENSO indices for IO 

WS data were explored for the Indian Ocean region (30 °E—
120 °E and 30 °N—70 °S) for July and January representing the
southwest and northeast monsoons respectively. Spatial cor-
relation plots were generated at a 95% confidence interval
to analyze how WS, SST, and ENSO indices were related. To
test if the correlation values are statistically significant, p-
values were calculated ( Table 1 ) at 0.05 significance level.
Figure 1 a and b depict significantly correlated regions for
January and July representing opposite monsoon phases be-
tween WS and SST for all the 67 years. Considering the
northern Indian Ocean, there was a negative correlation be-
tween WS and SST over BOB during July. It indicated higher
(lower) WS at lower (higher) SST values. Figures 2—4 show
how WS and SST correlated differently in the study area dur-
ing the normal, El Niño and La Niña years for the above men-
tioned period. During the normal years (July) there was a
significant negative correlation over BOB which fades away
from La Niña to El Niño years. During the El Niño years, there
was a significant negative correlation between WS and SST
off the west coast of India in January and a positive correla-
tion off the coast of Sri Lanka during July. During the La Niña
years, there was a significant negative correlation over parts
of BOB during July and a significant positive correlation off
the Somali coast during January. Thus during El Niño events,
the influence of local SST on the WS value decreased in the
northern Indian Ocean in July whereas it increased on the

http://www.esrl.noaa.gov/psd/data/climateindices/
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Table 1 p-values calculated to test if the correlation (r) is significant at 0.05 significance level for the period 1950—2016 
(N = 67). First all the January (JAN) months and all the July (JUL) months were considered. Then the above period was classified 
as normal or El Niño or La Niña year and tested. 

All JAN 1950—2016 All JUL 1950—2016 Normal JAN Normal JUL El Niño JAN El Niño JUL La Niña JAN La Niña JUL 
N = 67 N = 67 N = 22 N = 33 N = 25 N = 17 N = 20 N = 17 

(r) p-value p-value p-value p-value p-value p-value p-value p-value 

1 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 
0.8 0.00001 0.00001 0.00001 0.00001 0.00001 0.0001 0.00001 0.0001 
0.6 0.00001 0.00001 0.0031 0.0002 0.0015 0.0109 0.0052 0.0109 
0.5 0.00001 0.00001 0.0178 0.0030 0.0109 0.0409 0.0248 0.0409 
0.45 0.00013 0.00013 0.0356 0.0086 0.0240 0.0699 0.0465 0.0699 
0.4 0.0008 0.0008 0.0651 0.0211 0.0476 0.1116 0.0805 0.1116 
0.35 0.0037 0.0037 0.1103 0.0458 0.0863 0.1684 0.1303 0.1684 
0.3 0.0136 0.0136 0.1749 0.0898 0.1451 0.2420 0.1988 0.2420 
0.25 0.0413 0.0413 0.2618 0.1606 0.2281 0.3331 0.2878 0.3331 
0.2 0.1046 0.1046 0.3722 0.2644 0.3378 0.4415 0.3979 0.4415 
0 1 1 1 1 1 1 1 1 
−0.2 0.1046 0.1046 0.3722 0.2644 0.3378 0.4415 0.3979 0.4415 
−0.25 0.0413 0.0413 0.2618 0.1606 0.2281 0.3331 0.2878 0.3331 
−0.3 0.0136 0.0136 0.1749 0.0898 0.1451 0.2420 0.1988 0.2420 
−0.35 0.0037 0.0037 0.1103 0.0458 0.0863 0.1684 0.1303 0.1684 
−0.4 0.0008 0.0008 0.0651 0.0211 0.0476 0.1116 0.0805 0.1116 
−0.45 0.00013 0.00013 0.0356 0.0086 0.0240 0.0699 0.0465 0.0699 
−0.5 0.00001 0.00001 0.0178 0.0030 0.0109 0.0409 0.0248 0.0409 
−0.6 0.00001 0.00001 0.0031 0.0002 0.0015 0.0109 0.0052 0.0109 
−0.8 0.00001 0.00001 0.00001 0.00001 0.00001 0.0001 0.00001 0.0001 
−1 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 

(If the p-value is less than the significance level α = 0.05 then r is significant). 

Figure 1 Significantly correlated regions between WS and SST at 95% confidence interval for (a) all January months (1950—2016) 
and (b) all July months (1950—2016). 



130 M. Sinha et al./Oceanologia 62 (2020) 126—138 

Figure 2 Significantly correlated regions between WS and SST at 95% confidence interval for (a) normal January months (22 years) 
and (b) normal July months (33 years). 

Figure 3 Significantly correlated regions between WS and SST at 95% confidence interval for (a) El Niño January months (25 years) 
and (b) El Niño July months (17 years). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

west coast of India in January. Between 30 °S and 60 °S, there
were both positively and negatively significantly correlated
regions in January considering the normal years. These
patches of correlated regions again faded away from La Niña
to El Niño years. In July the Southern Indian Ocean was how-
ever uncorrelated in terms of WS and SST parameters. 

The six plots in Fig. 5 depicts significant correlation
regions between WS and the ENSO indices namely SOI, MEI
and NINO3.4 for the normal January and July months re-
spectively. During January there was a negative correlation
between WS and SOI off Sri Lanka and southern part of
the west coast of India and positive correlation with MEI
and NINO3.4 for the same regions. As per the definitions of
the indices opposite correlation signs were justified. The
correlation patterns indicated the teleconnection features
of the wind parameters with the ENSO indices. Figure 6 gave
similar six plots for El Niño years and subsequently Fig. 7
for La Niña years. During the January El Niño episodes, the
WS was significantly positively correlated with the MEI and
NINO3.4 indices over a large area off Sri Lanka. In July the
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Figure 4 Significantly correlated regions between WS and SST at 95% confidence interval for (a) La Niña January months (20 years) 
and (b) La Niña July months (17 years). 
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nfluence was over a smaller area. However, such an impact
as absent during the La Niña years. 

.2. EOF analysis and wavelet analysis for WS data 

f BOB region 

OF analysis was applied to the WS data of the BOB region
25 °N to 5 °N and 77.5 °E to 100 °E) for the analyzed period
o extract the dominant mode representing the maximum 

ariability. For January the first eigenmode accounted for 
2.9% of the total variability of the WS data for the BOB
egion. Figure 8 c depicts the spatial pattern of the first
igenmode of WS data. The maximum loading at the central
OB may be attributed to the northeast monsoon winds. 
he other eigenvectors contributed insignificantly and 
hus were not discussed. The PC1 corresponding to the 
rst eigenmode is given in Fig. 8 a, in which the maximum
alue occurred in 2007, while a deep fluctuation giving a 
inimum value in 2008. The high (low) peaks in the tem-
oral pattern exhibited by the WS-PC1 corresponds to the 
egative (positive) NAO events ( Fig. 8 e). Thus, in general,
n inverse relationship (negative correlation) between 
he NAO and the WS in the BOB region during the winter
onsoon was observed, although there were few instances 
f positive correlation in the late 1960s and the mid-1980s.
or July the first eigenmode accounted for 49.1% of the to-
al variability of the WS data and Fig. 8 d depicts maximum
oading at the head Bay. The corresponding PC1 is given in
ig. 8 b. The temporal pattern gave a maximum in 1962,
 minimum in 1964. Again an inverse relationship can be 
stablished between the July WS-PC1 and the AMO which 
ave a decreasing trend during 1962 and an increasing 
rend during 1965 ( Fig. 8 f). Standardized time series were
onsidered in Fig. 8 e and f for effective comparison. 
The PC1 of WS data corresponding to January and July 

ere normalized by their standard deviation and then were 
ecomposed using the Morlet wavelet function. The Morlet 
avelets are non-orthogonal wavelet functions that are 
seful for time series analysis. The continuous wavelet 
ower spectra were generated with the cone of influence,
here edge effects become important. Anything outside it 
imits the ability to interpret the results. The black contour
nclosed regions of greater than 95% confidence for a
ed-noise process with a lag-1 coefficient of 0.52 (January)
nd 0.21 (July). The continuous wavelet power spectra 
enerated exhibits significant regions in the 2—4-year band 
hich corresponds to the ENSO oscillations having 2—7-year 
eriodicity. In Fig. 9 a representing the power spectrum
n January the maximum power occurred during 2007 in
he 2—4-year period. This matches the maximum value 
uring 2007 in Fig. 8 a representing the PC1 of WS data.
imilarly, for July, the maximum power in Fig. 9 b matches
ith the maximum value in Fig. 8 b corresponding to the
eriod 1962—64. Thus for the 67 years BOB WS data, the
ed-noise wavelet power spectra exhibits 2—4-year period 
scillations which maybe teleconnected with the ENSO 

ariability occurring in the 2—7-year band. 
Wavelet coherence is a measure of the correlation 

etween two time-series in the time-frequency plane. The 
elative phase relationship between the two time-series is 
hown with arrows. This can also be interpreted as a lead
r a lag. Phase arrows pointing right or left represents an
n-phase or anti-phase relationship. For two time-series X 
nd Y phase arrows pointing down say X leading Y by 90
egrees. A lead of 90 degrees can also be interpreted as a
ag of 270 degrees or a lag of 90 degrees relative to the anti-
hase (opposite sign). Figure 10 a and b displays the wavelet
oherence between PC1-WS data and SOI index for January
nd July respectively for the analyzed period. In January
nd July, WS and SOI were in anti-phase (when one is
aximum, the other is minimum and vice versa) in the
2-year period but were very insignificantly. From Fig. 10 a,
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Figure 5 Significantly correlated regions at 95% confidence interval (a) between WS and SOI for 22 normal January months and 
(b) between WS and SOI for 33 normal July months and (c) between WS and MEI for 22 normal January months and (d) between WS 
and MEI for 33 normal July months and (e) between WS and NINO3.4 for 22 normal January months and (f) between WS and NINO3.4 
for 33 normal July months. 
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Figure 6 Significantly correlated regions at 95% confidence interval (a) between WS and SOI for 25 El Niño January months and 
(b) between WS and SOI for 17 El Niño July months and (c) between WS and MEI for 25 El Niño January months and (d) between WS 
and MEI for 17 El Niño July months and (e) between WS and NINO3.4 for 25 El Niño January months and (f) between WS and NINO3.4 
for 17 El Niño July months. 
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Figure 7 Significantly correlated regions at 95% confidence interval (a) between WS and SOI for 20 La Niña January months and 
(b) between WS and SOI for 17 La Niña July months and (c) between WS and MEI for 20 La Niña January months and (d) between 
WS and MEI for 17 La Niña July months and (e) between WS and NINO3.4 for 20 La Niña January months and (f) between WS and 
NINO3.4 for 17 La Niña July months. 
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Figure 8 For the BOB WS data (1950—2016) (a) the PC1 for January and (b) the PC1 for July and (c) the first spatial eigenmode 
(42.9%) for January and (d) the first spatial eigenmode (49.1%) for July and (e) comparison between standardized WS-PC1 and NAO 

for January and (f) comparison between standardized WS-PC1 and AMO for July. 
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t can be said, the coherency was greater than 0.8 during
955—65 (from x-axis) in the 8—16-year band (from y-axis). 
igure 10 b shows higher coherency regions in the 0—4-year 
eriod with both in-phase and anti-phase relationships. 
igure 11 a and b gave the wavelet coherence between PC1-
S data and MEI index for January and July respectively for
he analyzed period with similar periodicities. In Fig. 11 a 
here were again higher coherency regions in the 8—16-year 
eriod but with both in-phase and anti-phase relationships. 
ig. 11 b shows the in-phase relationship in the 0—4-year
eriod along with higher coherency. Figure 12 a and b gave
imilar plots with the NINO3.4 index. In January ( Fig. 12 a)
nd July ( Fig. 12 b) there were regions with higher coherency
n the 8—16-year band and 0—4-year period respectively. An
-year quasi-cyclic behavior of NAO may be the cause of the
—16-year band coherency of WS variability with the ENSO 

ndices. In July there was an in-phase relationship between
S and the ENSO indices in the 0—4-year band. This may
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Figure 9 The continuous wavelet power spectrum of WS-PC1 along with the black contours which encircle the 5% significance 
regions, using a red-noise background spectrum, for (a) January and (b) July. 

Figure 10 Squared wavelet coherence between PC1-WS and SOI time series for (a) January and (b) July. 

Figure 11 Squared wavelet coherence between PC1-WS and MEI time series for (a) January and (b) July. 

Figure 12 Squared wavelet coherence between PC1-WS and NINO3.4 time series for (a) January and (b) July. 
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e linked to the warm phases of AMO which are known to
trengthen the summer monsoon rainfall over India. 

. Conclusions 

n attempt has been made in the present work to explore
ow WS of the Indian Ocean region were influenced by the
ocal SST and remote ENSO indices. Spatial correlation plots 
ith significance level were generated between WS, SST 
ata and the ENSO indices for July and January representing
he southwest and northeast monsoons respectively. During 
he normal July months, there was a significant negative 
orrelation between WS and SST over BOB which fades 
uring El Niño years. Thus the SW monsoon locally impacted
he WS and SST relationship. Next correlation plots were 
enerated at a 95% confidence interval between WS and 
NSO indices. Considering the normal January months WS 
ad a significant negative correlation with SOI off the 
oast of Sri Lanka and south-west coast of India while the
ignificant positive correlation with MEI and NINO3.4 for 
he same regions. During the El Niño years, WS had a sig-
ificant positive correlation with MEI and NINO3.4 both, in 
anuary and July. Thus during the El Niño episodes, WS data
as remotely influenced by the ENSO indices. During the La 
iña years, there were no significant correlation patterns. 
Further EOF analysis was applied to the WS data of the

OB region. For January the first eigenmode accounted for 
2.9% and July 49.1% of the total variability. The January 
nd July wind speed PCs were linked with the NAO and AMO
scillations respectively. The continuous wavelet power 
pectra of PC1 of WS data were generated for January 
nd July. For both the red-noise wavelet power spectra, 
he significant regions occurred in the 2—4-year period 
eplicating ENSO like oscillations. In January there were 
igher coherency values in the 8—16-year band which was 
elated to the 8-year quasi-cyclic behavior of NAO. In July 
he higher coherency regions in the 0—4 year period were 
ssociated with the warm phases of the AMO which were 
nown to strengthen the Indian summer monsoon rainfall. 
hus patterns of global climate oscillations were compared 
o establish a close relationship between the WS variability 
nd the ENSO indices in the BOB region. 
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